Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #7 : Non Homogeneous Cases

\displaystyle \begin{align*}&\text{Find }\begin{bmatrix}x\\y\end{bmatrix}\\&\text{for the system: }\begin{bmatrix}4&18\\-16&16\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}20\\-29\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}2.39\\0.58\end{bmatrix}

\displaystyle \begin{bmatrix}-2.61\\-4.42\end{bmatrix}

\displaystyle \begin{bmatrix}-5.61\\-7.42\end{bmatrix}

\displaystyle \begin{bmatrix}3.39\\1.58\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}2.39\\0.58\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}4&18\\-16&16\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}20\\-29\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{With this property we can solve our system:}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}0.045&-0.051\\0.045&0.011\end{bmatrix}\begin{bmatrix}20\\-29\end{bmatrix}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}2.39\\0.58\end{bmatrix}\end{align*}

Example Question #101 : Linear Equations

\displaystyle \begin{align*}&\text{Find the values of }\begin{bmatrix}x\\y\\z\end{bmatrix}\\&\text{for the function: }\begin{bmatrix}-4&4&6\\-15&0&-8\\3&18&-3\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-187\\172\\170\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}-1.26\\-2.41\\-36.40\end{bmatrix}

\displaystyle \begin{bmatrix}6.74\\5.59\\-28.40\end{bmatrix}

\displaystyle \begin{bmatrix}4.74\\3.59\\-30.40\end{bmatrix}

\displaystyle \begin{bmatrix}-3.26\\-4.41\\-38.40\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}4.74\\3.59\\-30.40\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}-4&4&6\\-15&0&-8\\3&18&-3\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-187\\172\\170\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{Using this, we can solve for our values:}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-0.058&-0.049&0.013\\0.028&0.002&0.049\\0.109&-0.034&-0.024\end{bmatrix}\begin{bmatrix}-187\\172\\170\end{bmatrix}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}4.74\\3.59\\-30.40\end{bmatrix}\end{align*}

Example Question #102 : Linear Equations

\displaystyle \begin{align*}&\text{Solve the system of equations: }\begin{bmatrix}18&-17&14\\17&-20&1\\6&-5&6\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}105\\30\\53\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}54.31\\44.23\\-8.62\end{bmatrix}

\displaystyle \begin{bmatrix}53.31\\43.23\\-9.62\end{bmatrix}

\displaystyle \begin{bmatrix}63.31\\53.23\\0.38\end{bmatrix}

\displaystyle \begin{bmatrix}49.31\\39.23\\-13.62\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}54.31\\44.23\\-8.62\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}18&-17&14\\17&-20&1\\6&-5&6\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}105\\30\\53\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{With this, we can solve our system of equations:}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-2.212&0.615&5.058\\-1.846&0.462&4.231\\0.673&-0.231&-1.365\end{bmatrix}\begin{bmatrix}105\\30\\53\end{bmatrix}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}54.31\\44.23\\-8.62\end{bmatrix}\end{align*}

Example Question #103 : Linear Equations

\displaystyle \begin{align*}&\text{Find the values of }\begin{bmatrix}x\\y\\z\end{bmatrix}\\&\text{for the function: }\begin{bmatrix}-2&-17&10\\-19&-3&-19\\20&1&17\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-47\\154\\-98\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}5.98\\-10.63\\-18.88\end{bmatrix}

\displaystyle \begin{bmatrix}0.98\\-15.63\\-23.88\end{bmatrix}

\displaystyle \begin{bmatrix}3.98\\-12.63\\-20.88\end{bmatrix}

\displaystyle \begin{bmatrix}8.98\\-7.63\\-15.88\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}8.98\\-7.63\\-15.88\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}-2&-17&10\\-19&-3&-19\\20&1&17\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-47\\154\\-98\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{Using this, we can solve for our values:}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}-0.022&0.207&0.245\\-0.040&-0.162&-0.158\\0.028&-0.234&-0.220\end{bmatrix}\begin{bmatrix}-47\\154\\-98\end{bmatrix}\\&\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}8.98\\-7.63\\-15.88\end{bmatrix}\end{align*}

Example Question #11 : Non Homogeneous Cases

\displaystyle \begin{align*}&\text{Find }\begin{bmatrix}x\\y\end{bmatrix}\\&\text{for the system: }\begin{bmatrix}16&-11\\-10&6\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-78\\131\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}-69.50\\-94.00\end{bmatrix}

\displaystyle \begin{bmatrix}-72.50\\-97.00\end{bmatrix}

\displaystyle \begin{bmatrix}-74.50\\-99.00\end{bmatrix}

\displaystyle \begin{bmatrix}-76.50\\-101.00\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}-69.50\\-94.00\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}16&-11\\-10&6\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-78\\131\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{With this property we can solve our system:}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-0.429&-0.786\\-0.714&-1.143\end{bmatrix}\begin{bmatrix}-78\\131\end{bmatrix}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-69.50\\-94.00\end{bmatrix}\end{align*}

Example Question #105 : Linear Equations

\displaystyle \begin{align*}&\text{Find }\begin{bmatrix}x\\y\end{bmatrix}\\&\text{for the system: }\begin{bmatrix}1&16\\-10&-11\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}136\\-2\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \begin{bmatrix}-8.83\\10.11\end{bmatrix}

\displaystyle \begin{bmatrix}-9.83\\9.11\end{bmatrix}

\displaystyle \begin{bmatrix}-14.83\\4.11\end{bmatrix}

\displaystyle \begin{bmatrix}-16.83\\2.11\end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix}-9.83\\9.11\end{bmatrix}

Explanation:

\displaystyle \begin{align*}&\text{When faced with a system of equations like the}\\&\text{one represented by }\\&\begin{bmatrix}1&16\\-10&-11\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}136\\-2\end{bmatrix}\\&\text{a common approach is to manipulate coefficients to eliminate}\\&\text{variables. This works, though there is another way to consider.}\\&\text{If a matrix has an inverse,}\\&\text{then the product of that matrix and its inverse is the identity matrix:}\\&A^{-1}A=AA^{-1}=I\\&\text{As such, if given an equation like: }Ax=B\\&\text{we can isolate x as follows:}\\&A^{-1}Ax=A^{-1}B\\&x=A^{-1}B\\&\text{With this property we can solve our system:}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-0.074&-0.107\\0.067&0.007\end{bmatrix}\begin{bmatrix}136\\-2\end{bmatrix}\\&\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-9.83\\9.11\end{bmatrix}\end{align*}

Example Question #13 : Non Homogeneous Cases

It is recommended that you use a calculator with matrix arithmetic capability for this question.

The graph of a quartic (degree four) polynomial \displaystyle p passes through the following five points:

\displaystyle (-4,0 )\displaystyle (-2, 6)\displaystyle (0 , -2 )\displaystyle (2, 5)\displaystyle (4, -1 )

What is the cubic term of \displaystyle p

Round to four decimal digits.

Possible Answers:

\displaystyle -0.1484x^{3}

None of the other choices gives the correct response.

\displaystyle 0.0104x^{3}

\displaystyle 2.4469x^{3}

\displaystyle -0.2917x^{3}

Correct answer:

\displaystyle 0.0104x^{3}

Explanation:

A quartic polynomial takes the form 

\displaystyle p(x) = a_{4}x^{4} + a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}

where the \displaystyle a_{n} are the coefficients. The value we are trying to identify is \displaystyle a_{4}, the quartic term.

An equation can be formed from each given ordered pair by substituting the abscissa for \displaystyle x and the ordinate for \displaystyle p(x). The problem can be simplified somewhat by noting that, since the \displaystyle y-intercept of the graph of \displaystyle p is given as \displaystyle (0 , -2 )\displaystyle a_{0} = -2. Therefore, we are looking for the coefficients of 

\displaystyle p(x) = a_{4}x^{4} + a_{3}x^{3} + a_{2}x^{2} + a_{1}x -2.

The equations formed from the other four points are

\displaystyle 256 a_{4} -64a_{3} + 16a_{2} - 4a_{1} -2 = 0

\displaystyle 16 a_{4} -8a_{3} + 4a_{2} - 2a_{1} -2 = 6

\displaystyle 16 a_{4} +8a_{3} + 4a_{2} +2a_{1} -2 = 5

\displaystyle 256 a_{4} +64a_{3} + 16a_{2} + 4a_{1} -2 = -1

 

Adding two to both sides of each equation:

\displaystyle 256 a_{4} -64a_{3} + 16a_{2} - 4a_{1} =2

\displaystyle 16 a_{4} -8a_{3} + 4a_{2} - 2a_{1} =8

\displaystyle 16 a_{4} +8a_{3} + 4a_{2} +2a_{1} =7

\displaystyle 256 a_{4} +64a_{3} + 16a_{2} + 4a_{1} = 1

This is a system of four linear equations in four variables, which can be rewritten as the matrix multiplication equation \displaystyle A x = b, where \displaystyle A is the matrix of coefficients, \displaystyle x, the column matrix of variables, and \displaystyle b the matrix of constants; this equation is 

\displaystyle \begin{bmatrix} 256 & -64 & 16 & -4 \\ 16 & -8 & 4 & -2 \\ 16 & 8 & 4 & 2 \\ 256 & 64 & 16 & 4 \end{bmatrix}\begin{bmatrix} a_{4} \\a_{3} \\ a _{2} \\ a_{1} \end{bmatrix}=\begin{bmatrix}2 \\8\\7\\1 \end{bmatrix}

We are trying to calculate \displaystyle x; since \displaystyle A x = b,  \displaystyle x = A^{-1}b, or

\displaystyle \begin{bmatrix} a_{4} \\a_{3} \\ a _{2} \\ a_{1} \end{bmatrix}=\begin{bmatrix} 256 & -64 & 16 & -4 \\ 16 & -8 & 4 & -2 \\ 16 & 8 & 4 & 2 \\ 256 & 64 & 16 & 4 \end{bmatrix} ^{-1}\begin{bmatrix}2 \\8\\7\\1 \end{bmatrix}

This calculates to

\displaystyle \begin{bmatrix} a_{4} \\a_{3} \\ a _{2} \\ a_{1} \end{bmatrix}= \begin{bmatrix}-0.1484 \\ 0.0104\\2.4469\\-0.2917 \end{bmatrix}.

Since the cubic term is requested, select \displaystyle a_{3} = 0.0104. The correct response is \displaystyle 0.0104 x^{3}.

Example Question #106 : Linear Equations

The initial tableau for a system of linear inequalities being solved using the simplex method is

\displaystyle \begin{bmatrix} 2 & 5 & 1 & 1 & 0 & 0 & 250 \\ 1 & 2 & 1 & 0 & 1 & 0 & 300 \\ 3 & 1 & 2 & 0 & 0 & 1& 400 \\ -3 & -4 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}

The variables are \displaystyle x_{1}, x_{2}, x_{3}.

What is represented by the first row?

Possible Answers:

The objective function to be minimized, \displaystyle 2x_{1}+ 5x_{2}+ x_{3}

The objective function to be maximized, \displaystyle 2x_{1}+ 5x_{2}+ x_{3}

The constraint \displaystyle 2x_{1}+ 5x_{2}+ x_{3} \ge 250

The constraint \displaystyle 2x_{1}+ 5x_{2}+ x_{3} \le 250

Correct answer:

The constraint \displaystyle 2x_{1}+ 5x_{2}+ x_{3} \le 250

Explanation:

The bottom row of an initial simplex tableau is the one that represents the objective function to be minimized; the other rows represent constraints on the variables in the system. In a system of three variables, the first three entries of one of the rows represent the coefficients of those variables; the next three represent those of slack variables introduced into the system, which were not part of the original inequality. The last entry gives the number the linear expression is less than or equal to. Therefore, the first row represents the inequality

\displaystyle 2x_{1}+ 5x_{2}+ x_{3} \le 250,

which is a constraint of the system.

Example Question #107 : Linear Equations

The initial tableau for a system of linear inequalities being solved using the simplex method is

\displaystyle \begin{bmatrix} 2 & 5 & 1 & 1 & 0 & 0 & 250 \\ 1 & 2 & 1 & 0 & 1 & 0 & 300 \\ 3 & 1 & 2 & 0 & 0 & 1& 400 \\ -3 & -4 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}

The variables are \displaystyle x_{1}, x_{2}, x_{3}.

Which of the following is the objective function of the system?

Possible Answers:

\displaystyle 250 x_{1}+ 3000 x_{2}+ 400 x_{3}

\displaystyle 2 x_{1}+ x_{2}-3 x_{3}

\displaystyle 3 x_{1}+ 4 x_{2}+ x_{3}

\displaystyle -2 x_{1}-5 x_{2}- x_{3}

The objective function cannot be determined by inspecting the initial tableau.

Correct answer:

\displaystyle 3 x_{1}+ 4 x_{2}+ x_{3}

Explanation:

The objective function in a simplex method - the function to be minimized - is represented by the bottom row of the initial tableau, with the coefficients the additive inverses of the entries in that row. The objective function of the system is therefore \displaystyle 3 x_{1}+ 4 x_{2}+ x_{3}.

Example Question #108 : Linear Equations

Write the initial simplex method tableau for the problem of maximizing the expression

\displaystyle 4x_{1}+ 2x_{2}+ x_{3}

subject to the constraints:

\displaystyle x_{1}, x_{2}, x_{3}\ge 0

\displaystyle x_{1} - x_{3} \le 2,000

\displaystyle x_{2}+ x_{3} \le 3,000

\displaystyle x_{1}- 3x_{2} \le 4,000

Possible Answers:

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 2,000 \\ 0 & 1 & 1 & 3,000 \\ 1 & 0 & -3 & 4,000 \\ 4 & 2 & 1 & 0 & \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 2,000 \\ 0 & 1 & 1 & 3,000 \\ 1 & 0 & -3 & 4,000 \\ -4 & -2 & -1 & 0 & \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 2,000 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3,000 \\ 1 & 0 & -3 & 0 & 0 & 1 & 4,000 \\ -4 & -2 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 2,000 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3,000 \\ 1 & 0 & -3 & 0 & 0 & 1 & 4,000 \\ 4 & 2 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 1 & 2,000 \\ 0 & 1 & 1 & 1 & 3,000 \\ 1 & 0 & -3 & 1 & 4,000 \\ -4 & -2 & -1 & 0& 0 \end{bmatrix}

Correct answer:

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 2,000 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3,000 \\ 1 & 0 & -3 & 0 & 0 & 1 & 4,000 \\ -4 & -2 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}

Explanation:

When writing the initial simplex method tableau for a system of linear inequalities, first, recast each inequality as an equation by introducing three other variables, \displaystyle s_{1}, s_{2}, s_{3}, called slack variables, as follows:

\displaystyle x_{1} - x_{3} \le 2,000 

becomes

\displaystyle x_{1} - x_{3}+ s_{1}= 2,000

 

\displaystyle x_{2}+ x_{3} \le 3,000

becomes 

\displaystyle x_{2}+ x_{3}+ s_{2} = 3,000

 

\displaystyle x_{1}- 3x_{2} \le 4,000

becomes 

\displaystyle x_{1}- 3x_{2} +s_{3}= 4,000

 

The system of three inequalities in three equations becomes a system of three equations in six variables. The coefficients form the first three rows of the augmented matrix that sets up the initial simplex tableau.

The bottom row comprises the additive inverses of the coefficients of the expression to be maximized, or the objective function. 

The initial tableau is therefore

\displaystyle \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & 0 & 2,000 \\ 0 & 1 & 1 & 0 & 1 & 0 & 3,000 \\ 1 & 0 & -3 & 0 & 0 & 1 & 4,000 \\ -4 & -2 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}.

Learning Tools by Varsity Tutors