Linear Algebra : Eigenvalues and Eigenvectors of Symmetric Matrices

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Find the Eigen Values for Matrix \displaystyle A.

 

\displaystyle A=\begin{bmatrix} 1 & -3 \\ 5& 4 \end{bmatrix}

Possible Answers:

\displaystyle \lambda=\frac{5+ \sqrt{51}}{2}

 

\displaystyle \lambda=\frac{5- i\sqrt{51}}{2}

\displaystyle \lambda=\frac{5+ i\sqrt{51}}{2}

 

\displaystyle \lambda=\frac{5- \sqrt{51}}{2}

\displaystyle \lambda=\frac{5+ i\sqrt{51}}{2}

\displaystyle \lambda=\frac{5- i\sqrt{51}}{2}

\displaystyle \lambda=\frac{5+\sqrt{51}}{2}

 

\displaystyle \lambda=\frac{5- \sqrt{51}}{2}

There are no eigen values

Correct answer:

\displaystyle \lambda=\frac{5+ i\sqrt{51}}{2}

\displaystyle \lambda=\frac{5- i\sqrt{51}}{2}

Explanation:

The first step into solving for eigenvalues, is adding in a \displaystyle -\lambda along the main diagonal. 

\displaystyle A=\begin{bmatrix} 1-\lambda & -3 \\ 5& 4-\lambda \end{bmatrix}

Now the next step to take the determinant.

 

\displaystyle \det(A)=(1-\lambda)(4-\lambda)-(-3)(5)

\displaystyle \det(A)=(1-\lambda)(4-\lambda)+15

Now lets FOIL, and solve for \displaystyle \lambda.

\displaystyle (1-\lambda)(4-\lambda)+15=4-\lambda-4\lambda+\lambda^2+15

\displaystyle =\lambda^2-5\lambda+19

Now lets use the quadratic equation to solve for \displaystyle \lambda.

 

\displaystyle \lambda=\frac{5\pm\sqrt{(-5)^2-4(19)}}{2(1)}

\displaystyle \lambda=\frac{5\pm\sqrt{25-76}}{2}

\displaystyle \lambda=\frac{5\pm\sqrt{-51}}{2}

\displaystyle \lambda=\frac{5\pm i\sqrt{51}}{2}

So our eigen values are

\displaystyle \lambda=\frac{5+ i\sqrt{51}}{2}

 

\displaystyle \lambda=\frac{5- i\sqrt{51}}{2}

Example Question #2 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Find the eigenvalues and set of mutually orthogonal

eigenvectors for the following matrix.

\displaystyle A=\begin{bmatrix} 3&2 &4 \\ 2& 0 &2 \\ 4&2&3\end{bmatrix}

Possible Answers:

No eigenvalues or eigenvectors exist

\displaystyle \lambda=-1,-1,8

\displaystyle < 1,2,0>, < 4,2,-5>,< 2,1,2>

\displaystyle \lambda=-1,8

\displaystyle < 1,2,0>, < 4,2,-5>

\displaystyle \lambda=8

\displaystyle < 1,2,0>, < 2,1,2>

\displaystyle \lambda=1,8

\displaystyle < 4,2,-5>,< 2,1,2>

Correct answer:

\displaystyle \lambda=-1,-1,8

\displaystyle < 1,2,0>, < 4,2,-5>,< 2,1,2>

Explanation:

In this problem, we will get three eigen values and eigen vectors since it's a symmetric matrix.

To find the eigenvalues, we need to minus lambda along the main diagonal and then take the determinant, then solve for lambda.

\displaystyle \\ |A-I\lambda|=\begin{vmatrix} 3-\lambda&2 &4 \\ 2& 0-\lambda &2\\ 4 & 2 & 3-\lambda \end{vmatrix}

\displaystyle =(3-\lambda)\begin{vmatrix} -\lambda& 2 \\ 2 & 3-\lambda \end{vmatrix} -2\begin{vmatrix} 2& 2\\ 4& 3-\lambda \end{vmatrix} +4 \begin{vmatrix} 2&-\lambda \\ 4&2 \end{vmatrix}

\displaystyle =(3-\lambda)((-\lambda)(3-\lambda)-(2)(2))-2((2)(3-\lambda)-(2)(4))+4((2)(2)-(-\lambda(4)))

\displaystyle =(3-\lambda)(\lambda^2-3\lambda-4)-2(-2-2\lambda)+4(4+4\lambda)

\displaystyle =-\lambda^3+3\lambda^2+4\lambda+3\lambda^2-9\lambda-12+4+4\lambda+16+16\lambda

\displaystyle =-\lambda^3+6\lambda^2+15\lambda+8

This can be factored to

\displaystyle -(\lambda+1)^2(\lambda-8)=0

Thus our eigenvalues are at \displaystyle \lambda=-1, 8

Now we need to substitute \displaystyle \lambda into or matrix in order to find the eigenvectors.

For \displaystyle \lambda=-1.

 

Now we need to get the matrix into reduced echelon form.

\displaystyle R_1-2R_2\rightarrow R_2

\displaystyle R_1-R_3\rightarrow R_3

 

This can be reduced to 

This is in equation form is \displaystyle 2x+y+2z=0, which can be rewritten as \displaystyle y=-2x-2z. In vector form it looks like, \displaystyle < x, -2x-2z, z>

We need to take the dot product and set it equal to zero, and pick a value for \displaystyle x, and \displaystyle z.

Let \displaystyle x=1, and \displaystyle z=0.

\displaystyle < 1,-2,0>\cdot< x,-2x-2z,z>=0

\displaystyle x+4x+4z+0=0

\displaystyle 5x+4z=0

Now we pick another value for \displaystyle x, and \displaystyle z so that the result is zero. The easiest ones to pick are \displaystyle x=4, and \displaystyle z=-5.

So the orthogonal vectors for \displaystyle \lambda=-1 are \displaystyle < 1,-2,0>, and \displaystyle < 4,2,-5>.

Now we need to get the last eigenvector for \displaystyle \lambda=8.

 

After row reducing, the matrix looks like

So our equations are then

\displaystyle x-z=0, and \displaystyle 2y-z=0, which can be rewritten as \displaystyle x=z\displaystyle z=2y.

Then eigenvectors take this form, \displaystyle < 2y,y,2y>. This will be orthogonal to our other vectors, no matter what value of \displaystyle y, we pick. For convenience, let's pick \displaystyle y=1, then our eigenvector is\displaystyle < 2,1,2>.

 

 

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Find any and all eigenvalues for the matrix }\\&A=\begin{bmatrix}-9&-2\\-2&-2\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-12.53;\lambda_{2}=-4.47

\displaystyle \lambda_{1}=-15.53;\lambda_{2}=-7.47

\displaystyle \lambda_{1}=-9.53;\lambda_{2}=-1.47

\displaystyle \lambda_{1}=-0.53;\lambda_{2}=7.53

Correct answer:

\displaystyle \lambda_{1}=-9.53;\lambda_{2}=-1.47

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix, typically noted as }\lambda\text{, are those values which satisfy}\\&det(A-\lambda I)\text{(I being the identity matrix). For the matrix }A=\begin{bmatrix}-9&-2\\-2&-2\end{bmatrix}\\&\text{We can represent that equation as follows }\begin{bmatrix}- \lambda - 9&-2\\-2&- \lambda - 2\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{From that, we can find the eigenvalues:}\\&11\lambda + \lambda ^{2} + 14\\&\lambda_{1}=-9.53;\lambda_{2}=-1.47\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Find the eigenvalues for the matrix }\\&A=\begin{bmatrix}7&8\\8&-10\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-14.17;\lambda_{2}=9.17

\displaystyle \lambda_{1}=-22.17;\lambda_{2}=1.17

\displaystyle \lambda_{1}=-7.17;\lambda_{2}=16.17

\displaystyle \lambda_{1}=-13.17;\lambda_{2}=10.17

Correct answer:

\displaystyle \lambda_{1}=-13.17;\lambda_{2}=10.17

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, usually denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I is the identity matrix. For our matrix }A=\begin{bmatrix}7&8\\8&-10\end{bmatrix}\\&\text{We can define a matrix of the form }\begin{bmatrix}7 - \lambda&8\\8&- \lambda - 10\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{Using this, we can solve for our eigenvalues:}\\&3\lambda + \lambda ^{2} - 134\\&\lambda_{1}=-13.17;\lambda_{2}=10.17\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}4&-14&-12\\-14&10&13\\-12&13&1\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-8.64;\lambda_{2}=-5.89;\lambda_{3}=32.54

\displaystyle \lambda_{1}=-9.64;\lambda_{2}=-6.89;\lambda_{3}=31.54

\displaystyle \lambda_{1}=-13.64;\lambda_{2}=-10.89;\lambda_{3}=27.54

\displaystyle \lambda_{1}=-1.64;\lambda_{2}=1.11;\lambda_{3}=39.54

Correct answer:

\displaystyle \lambda_{1}=-9.64;\lambda_{2}=-6.89;\lambda_{3}=31.54

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}4&-14&-12\\-14&10&13\\-12&13&1\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}4 - \lambda&-14&-12\\-14&10 - \lambda&13\\-12&13&1 - \lambda\end{bmatrix}\\&\text{For a square matrix with dimensions of }3\\&det\begin{vmatrix} a&b&c \\ d&e&f\\g&h&i \end{vmatrix}=a(ei-fh)-b(di-fg)+c(dh-eg)\\&\text{Knowing this, we can expand and solve:}\\&(-1)\cdot (\lambda ^{3} - 15\lambda ^{2} - 455\lambda - 2096)\\&\lambda_{1}=-9.64;\lambda_{2}=-6.89;\lambda_{3}=31.54\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}12&18\\18&7\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-2.67;\lambda_{2}=33.67

\displaystyle \lambda_{1}=-17.67;\lambda_{2}=18.67

\displaystyle \lambda_{1}=-10.67;\lambda_{2}=25.67

\displaystyle \lambda_{1}=-8.67;\lambda_{2}=27.67

Correct answer:

\displaystyle \lambda_{1}=-8.67;\lambda_{2}=27.67

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}12&18\\18&7\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}12 - \lambda&18\\18&7 - \lambda\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{Knowing this, we can expand and solve:}\\&\lambda ^{2} - 19\lambda - 240\\&\lambda_{1}=-8.67;\lambda_{2}=27.67\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}8&-2&-20\\-2&-3&-9\\-20&-9&-3\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-31.00;\lambda_{2}=-8.84;\lambda_{3}=14.84

\displaystyle \lambda_{1}=-19.00;\lambda_{2}=3.16;\lambda_{3}=26.84

\displaystyle \lambda_{1}=-16.00;\lambda_{2}=6.16;\lambda_{3}=29.84

\displaystyle \lambda_{1}=-22.00;\lambda_{2}=0.16;\lambda_{3}=23.84

Correct answer:

\displaystyle \lambda_{1}=-22.00;\lambda_{2}=0.16;\lambda_{3}=23.84

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}8&-2&-20\\-2&-3&-9\\-20&-9&-3\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}8 - \lambda&-2&-20\\-2&- \lambda - 3&-9\\-20&-9&- \lambda - 3\end{bmatrix}\\&\text{For a square matrix with dimensions of }3\\&det\begin{vmatrix} a&b&c \\ d&e&f\\g&h&i \end{vmatrix}=a(ei-fh)-b(di-fg)+c(dh-eg)\\&\text{Knowing this, we can expand and solve:}\\&(-1)\cdot (\lambda ^{3} - 2\lambda ^{2} - 524\lambda + 84)\\&\lambda_{1}=-22.00;\lambda_{2}=0.16;\lambda_{3}=23.84\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Example Question #3 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}-14&4\\4&-19\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-21.22;\lambda_{2}=-11.78

\displaystyle \lambda_{1}=-29.22;\lambda_{2}=-19.78

\displaystyle \lambda_{1}=-26.22;\lambda_{2}=-16.78

\displaystyle \lambda_{1}=-18.22;\lambda_{2}=-8.78

Correct answer:

\displaystyle \lambda_{1}=-21.22;\lambda_{2}=-11.78

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}-14&4\\4&-19\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}- \lambda - 14&4\\4&- \lambda - 19\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{Knowing this, we can expand and solve:}\\&33\lambda + \lambda ^{2} + 250\\&\lambda_{1}=-21.22;\lambda_{2}=-11.78\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Example Question #2 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Calculate the eigenvalues for the matrix }\\&\begin{bmatrix}-15&8\\8&1\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-20.31;\lambda_{2}=2.31

\displaystyle \lambda_{1}=-27.31;\lambda_{2}=-4.69

\displaystyle \lambda_{1}=-18.31;\lambda_{2}=4.31

\displaystyle \lambda_{1}=-13.31;\lambda_{2}=9.31

Correct answer:

\displaystyle \lambda_{1}=-18.31;\lambda_{2}=4.31

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix A, often denoted as }\lambda\text{, are values which satisfy}\\&det(A-\lambda I)\text{, where I represents the identity matrix. For the given matrix }\begin{bmatrix}-15&8\\8&1\end{bmatrix}\\&\text{We can write a matrix of the form }\begin{bmatrix}- \lambda - 15&8\\8&1 - \lambda\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{Knowing this, we can expand and solve:}\\&14\lambda + \lambda ^{2} - 79\\&\lambda_{1}=-18.31;\lambda_{2}=4.31\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Example Question #1 : Eigenvalues And Eigenvectors Of Symmetric Matrices

\displaystyle \begin{align*}&\text{Find any and all eigenvalues for the matrix }\\&A=\begin{bmatrix}-16&-16\\-16&-4\end{bmatrix}\end{align*}

Possible Answers:

\displaystyle \lambda_{1}=-27.09;\lambda_{2}=7.09

\displaystyle \lambda_{1}=-36.09;\lambda_{2}=-1.91

\displaystyle \lambda_{1}=-25.09;\lambda_{2}=9.09

\displaystyle \lambda_{1}=-33.09;\lambda_{2}=1.09

Correct answer:

\displaystyle \lambda_{1}=-27.09;\lambda_{2}=7.09

Explanation:

\displaystyle \begin{align*}&\text{Eigenvalues of a matrix, typically noted as }\lambda\text{, are those values which satisfy}\\&det(A-\lambda I)\text{(I being the identity matrix). For the matrix }A=\begin{bmatrix}-16&-16\\-16&-4\end{bmatrix}\\&\text{We can represent that equation as follows }\begin{bmatrix}- \lambda - 16&-16\\-16&- \lambda - 4\end{bmatrix}\\&\text{For a square matrix with dimensions of }2\\&det\begin{vmatrix} a&b \\ c&d \end{vmatrix}=ad-bc\\&\text{From that, we can find the eigenvalues:}\\&20\lambda + \lambda ^{2} - 192\\&\lambda_{1}=-27.09;\lambda_{2}=7.09\\&\text{Note that since our matrix was symmetric, our eigenvalues are real.}\end{align*}

Learning Tools by Varsity Tutors