Linear Algebra : Eigenvalues and Eigenvectors of Symmetric Matrices

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Possible Answers:

Correct answer:

Explanation:

Example Question #11 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Possible Answers:

Correct answer:

Explanation:

Example Question #13 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Possible Answers:

Correct answer:

Explanation:

Example Question #14 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Possible Answers:

Correct answer:

Explanation:

Example Question #15 : Eigenvalues And Eigenvectors Of Symmetric Matrices

,

where  is a real number.

For  to have two real eigenvalues, what must be true for  ?

Possible Answers:

 or 

 or 

 can be any real number.

Correct answer:

 can be any real number.

Explanation:

Any real value of  makes  a symmetric matrix with real entries. It holds that any eigenvalues of  must be real regardless of the value of .

Example Question #14 : Eigenvalues And Eigenvectors Of Symmetric Matrices

Give the set of eigenvalues of  in terms of , if applicable.

Possible Answers:

The only eigenvalue is 0.

The eigenvalues are 0 and .

The only eigenvalue is .

The eigenvalues are  and .

The eigenvalues are 0 and .

Correct answer:

The eigenvalues are 0 and .

Explanation:

An eigenvalue of  is a zero of the characteristic equation formed from the determinant of , so find this determinant as follows:

Subtracting elementwise:

Set the determinant to 0 and solve for :

The determinant can be found by taking the upper-left-to-lower-right product and subtracting the upper-right-to-lower-left product:

,

so the eigenvalues of this matrix are 0 and .

 

 

Learning Tools by Varsity Tutors