ISEE Middle Level Quantitative : Numbers and Operations

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : How To Subtract Fractions

Zach cleaned \displaystyle \frac{1}{8} of the house and Alex cleaned \displaystyle \frac{1}{3} of the house. How much more of the house did Alex clean? 

Possible Answers:

\displaystyle \frac{5}{24}

\displaystyle \frac{1}{6}

\displaystyle \frac{7}{24}

\displaystyle \frac{2}{3}

\displaystyle \frac{1}{3}

Correct answer:

\displaystyle \frac{5}{24}

Explanation:

\displaystyle \frac{1}{3}-\frac{1}{8}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{8}\times\frac{3}{3}=\frac{3}{24}

\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}

\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}

Now that we have common denominators, we can subtract the fractions. Remember, when we subtract fractions, the denominator stays the same, we only subtract the numerator. 

\displaystyle \frac{8}{24}-\frac{3}{24}=\frac{5}{24}

Example Question #161 : Numbers And Operations

Lily pulled \displaystyle \frac{1}{9} of the weeds and Rose pulled \displaystyle \frac{1}{3}. How much more of the weeds did Rose pull? 

 

Possible Answers:

\displaystyle \frac{2}9{}

\displaystyle \frac{5}{7}

\displaystyle \frac{2}{3}

\displaystyle \frac{3}{5}

\displaystyle \frac{1}{9}

Correct answer:

\displaystyle \frac{2}9{}

Explanation:

\displaystyle \frac{1}{3}-\frac{1}{9}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{3}\times\frac{3}{3}=\frac{3}{9}

Now that we have common denominators, we can subtract the fractions. Remember, when we subtract fractions, the denominator stays the same, we only subtract the numerator. 

\displaystyle \frac{3}{9}-\frac{1}{9}=\frac{2}{9}

Example Question #73 : How To Subtract Fractions

Sally drank \displaystyle \frac{1}{12} of the milk and Sam drank \displaystyle \frac{2}{3}. How much more of the milk did Sam drink? 

Possible Answers:

\displaystyle \frac{7}{12}

\displaystyle \frac{1}2{}

\displaystyle \frac{5}{12}

\displaystyle \frac{2}3{}

\displaystyle \frac{7}8{}

Correct answer:

\displaystyle \frac{7}{12}

Explanation:

\displaystyle \frac{2}{3}-\frac{1}{12}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{2}{3}\times\frac{4}{4}=\frac{8}{12}

Now that we have common denominators, we can subtract the fractions. Remember, when we subtract fractions, the denominator stays the same, we only subtract the numerator. 

\displaystyle \frac{8}{12}-\frac{1}{12}=\frac{7}{12}

 

Example Question #821 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

Jake ate \displaystyle \frac{1}{7} of the popcorn and Dave ate \displaystyle \small \frac{4}{14} of the popcorn. How much more of the popcorn did Dave eat? 

Possible Answers:

\displaystyle \frac{1}7{}

\displaystyle \frac{9}{11}

\displaystyle \frac{5}6{}

\displaystyle \frac{2}7{}

\displaystyle \frac{2}3{}

Correct answer:

\displaystyle \frac{1}7{}

Explanation:

\displaystyle \frac{4}{14}-\frac{1}{7}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{7}\times\frac{2}{2}=\frac{2}{14}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{4}{14}-\frac{2}{14}=\frac{2}{14}

\displaystyle \small \frac{2}{14} can be reduced by dividing \displaystyle \small 2 by both sides. 

\displaystyle \small \frac {2}{14}\div\frac{2}{2}=\frac{1}{7}

Example Question #162 : Fractions

\displaystyle \small \frac{3}{15}\cdot \frac{4}{5}

Possible Answers:

\displaystyle \small \frac{36}{225}

\displaystyle \small \frac{12}{225}

\displaystyle \small \frac{4}{25}

\displaystyle \small \frac{36}{15}

\displaystyle \small \frac{12}{75}

Correct answer:

\displaystyle \small \frac{4}{25}

Explanation:

When multiplying fractions you simply multiply the numerators to find the numerator of the product, and multiply the denominators to find the denominator of the product.

\displaystyle \small 3\cdot 4=12

\displaystyle \small 5\cdot 15=75

So, our product is \displaystyle \small \frac{12}{75}.

Since both of these numbers are divisible by three, we simplify. 

\displaystyle \small \frac{12}{3}=4

\displaystyle \small \frac{75}{3}= 25

Our final answer is \displaystyle \small \frac{4}{25}.

Example Question #162 : Numbers And Operations

Which is the greater quantity?

(a) \displaystyle 3 \frac{1}{3} \times 4 \frac{1}{5}

(b) \displaystyle 12 \frac{1}{15}

Possible Answers:

(a) is greater

(a) and (b) are equal

(b) is greater

It is impossible to tell from the information given

Correct answer:

(a) is greater

Explanation:

Rewrite the mixed numbers as improper fractions, then multiply across:

\displaystyle 3 \frac{1}{3} = \frac{3\times 3 + 1}{3} = \frac{10}{3}

\displaystyle 4 \frac{1}{5} = \frac{4 \times 5 + 1}{5} = \frac{21}{5}

\displaystyle 3 \frac{1}{3} \times 4 \frac{1}{5} = \frac{10}{3} \times \frac{21}{5} = \frac{2}{1} \times \frac{7}{1} = 14

\displaystyle 14 > 12 \frac{1}{5}

Example Question #163 : Numbers And Operations

Which is the greater quantity?

(a) \displaystyle 6 \frac{5}{6} \times 6

(b) \displaystyle 41

Possible Answers:

(a) is greater

(a) and (b) are equal

(b) is greater

It is impossible to tell from the information given

Correct answer:

(a) and (b) are equal

Explanation:

Rewrite the factors as improper fractions, then multiply across:

\displaystyle 6 \frac{5}{6} = \frac{6\times 6 + 5}{6} = \frac{36 + 5}{6} = \frac{41}{6}

\displaystyle 6 = \frac{6}{1}

\displaystyle 6 \frac{5}{6} \times 6 =\frac{41}{6}\times \frac{ 6}{1}=\frac{41}{1}\times \frac{ 1}{1} = 41

Example Question #164 : Numbers And Operations

\displaystyle 0.75 t = 0.3

\displaystyle \frac{7}{4} k = \frac{7}{10}

Which is the greater quantity?

(a) \displaystyle k

(b) \displaystyle t

 

Possible Answers:

(b) is greater

(a) and (b) are equal

It is impossible to tell from the information given

(a) is greater

Correct answer:

(a) and (b) are equal

Explanation:

(a) \displaystyle 0.75 t = 0.3

\displaystyle 0.75 t \div 0.75 = 0.3 \div 0.75

\displaystyle t= 0.3 \div 0.75

Divide by moving the decimal point right two places in both numbers:

\displaystyle t= 30 \div 75 = 0.4

(b) \displaystyle \frac{7}{4} k = \frac{7}{10}

\displaystyle \frac{4} {7} \cdot \frac{7}{4} k =\frac{4} {7} \cdot \frac{7}{10}

\displaystyle k =\frac{4} {7} \cdot \frac{7}{10}

Cross-cancel:

\displaystyle k =\frac{2} {1} \cdot \frac{1}{5} = \frac{2} {5}

\displaystyle 0.4 = \frac{4}{10 } = \frac{4\div 2}{10\div 2 } = \frac{2}{5}, so \displaystyle k = t

Example Question #164 : Numbers And Operations

Which is the greater quantity?

(A) \displaystyle \left ( \frac{3}{5} \right )^{3}

(B) \displaystyle 0.6^{2}

Possible Answers:

(A) and (B) are equal

It is impossible to determine which is greater from the information given

(B) is greater

(A) is greater

Correct answer:

(B) is greater

Explanation:

\displaystyle \frac{3}{5} = 3 \div 5 = 0.6, so 

\displaystyle \left ( \frac{3}{5} \right )^{3} = 0.6^{3} = 0.6 \times 0.6 \times 0.6 = 0.36 \times 0.6 = 0.216

\displaystyle 0.6 ^{2} = 0.6 \times 0.6 = 0.36

 

\displaystyle 0.36 > 0.216, so  \displaystyle 0.6^{2} > \left ( \frac{3}{5} \right )^{3}, making (B) greater.

Example Question #165 : Numbers And Operations

Which is the greater quantity?

(A) \displaystyle 0.5

(B) \displaystyle \left ( \frac{4}{5} \right )^{3}

Possible Answers:

(A) is greater

(A) and (B) are equal

(B) is greater

It is impossible to determine which is greater from the information given

Correct answer:

(B) is greater

Explanation:

\displaystyle \left ( \frac{4}{5} \right )^{3} = 0.8 ^{3} = 0.8 \times 0.8 \times 0,8 = 0.64\times 0,8 = 0.512

Since \displaystyle 0.512 > 0.5\displaystyle \left ( \frac{4}{5} \right )^{3} > 0.5, so (B) is greater.

Learning Tools by Varsity Tutors