ISEE Middle Level Quantitative : ISEE Middle Level (grades 7-8) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Number & Operations With Fractions

Zach cleaned \displaystyle \frac{1}{8} of the house and Alex cleaned \displaystyle \frac{1}{3} of the house. How much of the house did they clean? 

Possible Answers:

\displaystyle \frac{2}{11}

\displaystyle \frac{11}{24}

\displaystyle \frac{1}{3}

\displaystyle \frac{12}{21}

\displaystyle \frac{5}{9}

Correct answer:

\displaystyle \frac{11}{24}

Explanation:

\displaystyle \frac{1}{8}+\frac{1}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{8}\times\frac{3}{3}=\frac{3}{24}

\displaystyle \frac{1}{3}\times\frac{8}{8}=\frac{8}{24}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{3}{24}+\frac{8}{24}=\frac{11}{24}

Example Question #2 : Solve Word Problems Involving Addition And Subtraction Of Fractions: Ccss.Math.Content.5.Nf.A.2

Ben washed \displaystyle \frac{3}{8} of the windows and Jen washed \displaystyle \frac{1}{4}. How much of the windows have they washed? 

Possible Answers:

\displaystyle \frac{5}{8}

\displaystyle \frac{1}{2}

\displaystyle \frac{3}9{}

\displaystyle \frac{5}{7}

\displaystyle \frac{4}{12}

Correct answer:

\displaystyle \frac{5}{8}

Explanation:

\displaystyle \frac{3}{8}+\frac{1}{4}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{4}\times\frac{2}{2}=\frac{2}{8}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{3}{8}+\frac{2}8{=\frac{5}{8}}

Example Question #2 : Number & Operations With Fractions

Jake ate \displaystyle \frac{1}{7} of the popcorn and Dave ate \displaystyle \small \frac{4}{14} of the popcorn. How much of the popcorn have they eaten? 

Possible Answers:

\displaystyle \small \frac{13}{21}

\displaystyle \small \frac{2}{3}

\displaystyle \small \frac{5}{21}

\displaystyle \small \frac{5}{7}

\displaystyle \small \frac{3}{7}

Correct answer:

\displaystyle \small \frac{3}{7}

Explanation:

\displaystyle \small \frac{1}{7}+\frac{4}{14}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{7}\times\frac{2}{2}=\frac{2}{14}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \small \frac{2}{14}+\frac{4}{14}=\frac{6}{14}

\displaystyle \small \frac{6}{14} can be reduced by dividing \displaystyle \small 2 by both sides. 

\displaystyle \small \frac{6}{14}\div\frac{2}{2}=\frac{3}{7}

Example Question #6 : Number & Operations With Fractions

Jessica ate \displaystyle \frac{1}{3} of the cake and Megan ate \displaystyle \frac{1}{2}. How much of the cake have they eaten? 

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{5}{8}

\displaystyle \frac{5}6{}

\displaystyle \frac{2}{5}

\displaystyle \frac{5}{12}

Correct answer:

\displaystyle \frac{5}6{}

Explanation:

\displaystyle \frac{1}{3}+\frac{1}2{}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}3{\times\frac{2}{2}=\frac{2}{6}}

\displaystyle \frac{1}{2}\times\frac{3}{3}=\frac{3}{6}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{2}{6}+\frac{3}{6}=\frac{5}{6}

Example Question #7 : Number & Operations With Fractions

Tim mowed \displaystyle \frac{1}{7} of the yard and Tom mowed \displaystyle \frac{1}{3}. How much of the yard have they mowed? 

Possible Answers:

\displaystyle \frac{10}{21}

\displaystyle \frac{9}{21}

\displaystyle \frac{2}{10}

\displaystyle \frac{1}{5}

\displaystyle \frac{2}{3}

Correct answer:

\displaystyle \frac{10}{21}

Explanation:

\displaystyle \frac{1}{7}+\frac{1}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{7}\times\frac{3}{3}=\frac{3}{21}

\displaystyle \frac{1}{3}\times \frac{7}{7}=\frac{7}{21}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{3}{21}+\frac{7}{21}=\frac{10}{21}

Example Question #1 : Number & Operations With Fractions

Shannon has painted \displaystyle \frac{5}{8} of the house and Dan has paided \displaystyle \frac{1}4{} of the house. How much of the house is painted?

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle \frac{2}{4}

\displaystyle \frac{7}{8}

\displaystyle \frac{6}{12}

\displaystyle \frac{3}{4}

Correct answer:

\displaystyle \frac{7}{8}

Explanation:

\displaystyle \frac{5}{8}+\frac{1}{4}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{4}\times\frac{2}{2}=\frac{2}{8}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{5}{8}+\frac{2}{8}=\frac{7}{8}

Example Question #741 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

David ate \displaystyle \frac{3}{12} of the pizza and Alison ate \displaystyle \frac{1}{3} of the pizza. How much of the pizza did they eat? 

Possible Answers:

\displaystyle \frac{7}{12}

\displaystyle \frac{6}{12}

\displaystyle \frac{4}{15}

\displaystyle \frac{3}{4}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \frac{7}{12}

Explanation:

\displaystyle \frac{3}{12}+\frac{1}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{3}\times\frac{4}{4}=\frac{4}{12}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{3}{12}+\frac{4}{12}=\frac{7}{12}

 

Example Question #85 : How To Add Fractions

Laura ate \displaystyle \frac{2}{7} of the ice cream and Drew ate \displaystyle \frac{1}{3}. How much of the ice cream did they eat?

Possible Answers:

\displaystyle \frac{9}{21}

\displaystyle \frac{13}{21}

\displaystyle \frac{3}{4}

\displaystyle \frac{3}{10}

\displaystyle \frac{11}{15}

Correct answer:

\displaystyle \frac{13}{21}

Explanation:

\displaystyle \frac{2}{7}+\frac{1}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{2}{7}\times\frac{3}{3}=\frac{6}{21}

\displaystyle \frac{1}{3}\times\frac{7}{7}=\frac{7}{21}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{6}{21}+\frac{7}{21}=\frac{13}{21}

Example Question #742 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

Kara ate \displaystyle \frac{7}{18} of the bag of chips and Andrew ate \displaystyle \frac{1}{9}. How much of the bag of chips did they eat?

Possible Answers:

\displaystyle \frac{9}{18}

\displaystyle \frac{8}{27}

\displaystyle \frac{15}{21}

\displaystyle \frac{6}{10}

\displaystyle \frac{3}9{}

Correct answer:

\displaystyle \frac{9}{18}

Explanation:

\displaystyle \frac{7}{18}+\frac{1}{9}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{1}{9}\times \frac{2}{2}=\frac{2}{18}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{7}{18}+\frac{2}{18}=\frac{9}{18}

Example Question #743 : Isee Middle Level (Grades 7 8) Quantitative Reasoning

Sally drank \displaystyle \frac{1}{12} of the milk and Sam drank \displaystyle \frac{2}{3}. What fraction of the milk did they drink? 

Possible Answers:

\displaystyle \frac{3}{15}

\displaystyle \frac{3}{4}

\displaystyle \frac{1}{2}

\displaystyle \frac{11}{15}

\displaystyle \frac{5}{7}

Correct answer:

\displaystyle \frac{3}{4}

Explanation:

\displaystyle \frac{1}{12}+\frac{2}{3}

In order to solve this problem, we first need to make common denominators. 

\displaystyle \frac{2}{3}\times\frac{4}{4}=\frac{8}{12}

Now that we have common denominators, we can add the fractions. Remember, when we add fractions, the denominator stays the same, we only add the numerator. 

\displaystyle \frac{1}{12}+\frac{8}{12}=\frac{9}{12}

\displaystyle \frac{9}{12} can be reduced by dividing \displaystyle 3 by both sides. 

\displaystyle \frac{9}{12}\div \frac{3}{3}=\frac{3}{4}

Learning Tools by Varsity Tutors