ISEE Middle Level Quantitative : ISEE Middle Level (grades 7-8) Quantitative Reasoning

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #18 : Plane Geometry

Hexagon \displaystyle HEXGON and Square \displaystyle SQUA both have perimeter 64. Which is the greater quantity?

(a) \displaystyle HE

(b) \displaystyle SQ

Possible Answers:

(b) is the greater quantity

(a) is the greater quantity

(a) and (b) are equal

It is impossible to determine which is greater from the information given

Correct answer:

It is impossible to determine which is greater from the information given

Explanation:

The length of one side of the square - in particular, that of \displaystyle \overline{SQ} - is equal to one fourth its perimeter, so it can be determined that \displaystyle SQ = 64 \div 4 = 16. However, no relation among the sides of the hexagon is given - in particular, it is not given that the hexagon is regular - so the length of \displaystyle \overline{HE} cannot be determined. Insufficient information is given.

Example Question #14 : Quadrilaterals

What is the length of a rectangular room with a perimeter of \displaystyle 42ft and a width of \displaystyle 7ft?

Possible Answers:

\displaystyle 28ft

\displaystyle 14ft

\displaystyle 22ft

\displaystyle 12ft

\displaystyle 18ft

Correct answer:

\displaystyle 14ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 42=2l+2(7)

\displaystyle 42=2l+14

Subtract \displaystyle 14 from both sides

\displaystyle 42-14=2l+14-14

\displaystyle 28=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{28}{2}=\frac{2l}{2}

\displaystyle 14=l

Example Question #15 : Quadrilaterals

What is the length of a rectangular room with a perimeter of \displaystyle 62ft and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 40ft

\displaystyle 23ft

\displaystyle 46ft

\displaystyle 37ft

\displaystyle 38ft

Correct answer:

\displaystyle 23ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 62=2l+2(8)

\displaystyle 62=2l+16

Subtract \displaystyle 16 from both sides

\displaystyle 62-16=2l+16-16

\displaystyle 46=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{46}{2}=\frac{2l}{2}

\displaystyle 23=l

Example Question #122 : Measurement & Data

What is the length of a rectangular room with a perimeter of \displaystyle 92ft and a width of \displaystyle 21ft?

 

Possible Answers:

\displaystyle 30ft

\displaystyle 25ft

\displaystyle 40ft

\displaystyle 45ft

\displaystyle 50ft

Correct answer:

\displaystyle 25ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 92=2l+2(21)

\displaystyle 92=2l+42

Subtract \displaystyle 42 from both sides

\displaystyle 92-42=2l+42-42

\displaystyle 50=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{50}{2}=\frac{2l}{2}

\displaystyle 25=l

Example Question #124 : Measurement & Data

What is the length of a rectangular room with a perimeter of \displaystyle 59ft and a width of \displaystyle 17ft?

Possible Answers:

\displaystyle 15ft

\displaystyle 25ft

\displaystyle 12ft

\displaystyle 12.5ft

\displaystyle 15.5ft

Correct answer:

\displaystyle 12.5ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 59=2l+2(17)

\displaystyle 59=2l+34

Subtract \displaystyle 34 from both sides

\displaystyle 59-34=2l+134-34

\displaystyle 25=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{25}{2}=\frac{2l}{2}

\displaystyle 12.5=l

Example Question #5621 : Ssat Elementary Level Quantitative (Math)

What is the length of a rectangular room with a perimeter of \displaystyle 66ft and a width of \displaystyle 18ft?

 

Possible Answers:

\displaystyle 12ft

\displaystyle 13ft

\displaystyle 14ft

\displaystyle 15ft

\displaystyle 11ft

Correct answer:

\displaystyle 15ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 66=2l+2(18)

\displaystyle 66=2l+36

Subtract \displaystyle 36 from both sides

\displaystyle 66-36=2l+36-36

\displaystyle 30=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{30}{2}=\frac{2l}{2}

\displaystyle 15=l

Example Question #123 : Measurement & Data

What is the length of a rectangular room with a perimeter of \displaystyle 60ft and a width of \displaystyle 14ft?

Possible Answers:

\displaystyle 18ft

\displaystyle 16ft

\displaystyle 30ft

\displaystyle 26ft

\displaystyle 32ft

Correct answer:

\displaystyle 16ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 60=2l+2(14)

\displaystyle 60=2l+28

Subtract \displaystyle 28 from both sides

\displaystyle 60-28=2l+28-28

\displaystyle 32=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{32}{2}=\frac{2l}{2}

\displaystyle 16=l

Example Question #124 : Measurement & Data

What is the length of a rectangular room with a perimeter of \displaystyle 40ft and a width of \displaystyle 6ft?

Possible Answers:

\displaystyle 32ft

\displaystyle 28ft

\displaystyle 16ft

\displaystyle 18ft

\displaystyle 14ft

Correct answer:

\displaystyle 14ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 40=2l+2(6)

\displaystyle 40=2l+12

Subtract \displaystyle 12 from both sides

\displaystyle 40-12=2l+12-12

\displaystyle 28=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{28}{2}=\frac{2l}{2}

\displaystyle 14=l

Example Question #21 : How To Find The Perimeter Of A Rectangle

What is the length of a rectangular room with a perimeter of \displaystyle 96ft and a width of \displaystyle 30ft?

Possible Answers:

\displaystyle 22ft

\displaystyle 19ft

\displaystyle 18ft

\displaystyle 24ft

\displaystyle 20ft

Correct answer:

\displaystyle 18ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 96=2l+2(30)

\displaystyle 96=2l+60

Subtract \displaystyle 60 from both sides

\displaystyle 96-60=2l+60-60

\displaystyle 36=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{36}{2}=\frac{2l}{2}

\displaystyle 18=l

Example Question #5622 : Ssat Elementary Level Quantitative (Math)

What is the length of a rectangular room with a perimeter of \displaystyle 90ft and a width of \displaystyle 12ft

Possible Answers:

\displaystyle 33ft

\displaystyle 55ft

\displaystyle 22ft

\displaystyle 66ft

\displaystyle 44ft

Correct answer:

\displaystyle 33ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 90=2l+2(12)

\displaystyle 90=2l+24

Subtract \displaystyle 24 from both sides

\displaystyle 90-24=2l+24-24

\displaystyle 66=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{66}{2}=\frac{2l}{2}

\displaystyle 33=l

Learning Tools by Varsity Tutors