ISEE Middle Level Quantitative : Plane Geometry

Study concepts, example questions & explanations for ISEE Middle Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #202 : Measurement & Data

What is the length of a room with a perimeter of \displaystyle 52ft and a width of \displaystyle 13ft?

 

Possible Answers:

\displaystyle 14ft

\displaystyle 13ft

\displaystyle 12ft

\displaystyle 15ft

\displaystyle 16ft

Correct answer:

\displaystyle 13ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 52=2l+2(13)

\displaystyle 52=2l+26

Subtract \displaystyle 26 from both sides

\displaystyle 52-26=2l+26-26

\displaystyle 26=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{26}{2}=\frac{2l}{2}

\displaystyle 13=l

Example Question #81 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a room with a perimeter of \displaystyle 38ft and a width of \displaystyle 6ft?

 

Possible Answers:

\displaystyle 14ft

\displaystyle 17ft

\displaystyle 13ft

\displaystyle 16ft

\displaystyle 15ft

Correct answer:

\displaystyle 13ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 38=2l+2(6)

\displaystyle 38=2l+12

Subtract \displaystyle 12 from both sides

\displaystyle 38-12=2l+12-12

\displaystyle 26=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{26}{2}=\frac{2l}{2}

\displaystyle 13=l

Example Question #522 : Plane Geometry

What is the length of a room with a perimeter of \displaystyle 36ft and a width of \displaystyle 10ft?

 

Possible Answers:

\displaystyle 10ft

\displaystyle 7ft

\displaystyle 9ft

\displaystyle 11ft

\displaystyle 8ft

Correct answer:

\displaystyle 8ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 36=2l+2(10)

\displaystyle 36=2l+20

Subtract \displaystyle 20 from both sides

\displaystyle 36-20=2l+20-20

\displaystyle 16=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{16}{2}=\frac{2l}{2}

\displaystyle 8=l

Example Question #51 : Geometry

What is the length of a room with a perimeter of \displaystyle 52ft and a width of \displaystyle 11ft?

 

Possible Answers:

\displaystyle 15ft

\displaystyle 14ft

\displaystyle 13ft

\displaystyle 16ft

\displaystyle 17ft

Correct answer:

\displaystyle 15ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 52=2l+2(11)

\displaystyle 52=2l+22

Subtract \displaystyle 22 from both sides

\displaystyle 52-22=2l+22-22

\displaystyle 30=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{30}{2}=\frac{2l}{2}

\displaystyle 15=l

Example Question #41 : Quadrilaterals

What is the length of a room with a perimeter of \displaystyle 58ft and a width of \displaystyle 19ft?

 

Possible Answers:

\displaystyle 11ft

\displaystyle 7ft

\displaystyle 10ft

\displaystyle 8ft

\displaystyle 9ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 58=2l+2(19)

\displaystyle 58=2l+38

Subtract \displaystyle 38 from both sides

\displaystyle 58-38=2l+38-38

\displaystyle 20=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{20}{2}=\frac{2l}{2}

\displaystyle 10=l

Example Question #211 : Measurement & Data

What is the length of a room with a perimeter of \displaystyle 54ft and a width of \displaystyle 17ft?

Possible Answers:

\displaystyle 7ft

\displaystyle 10ft

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 9ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 54=2l+2(17)

\displaystyle 54=2l+34

Subtract \displaystyle 34 from both sides

\displaystyle 54-34=2l+34-34

\displaystyle 20=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{20}{2}=\frac{2l}{2}

\displaystyle 10=l

Example Question #171 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a room with a perimeter of \displaystyle 70ft and a width of \displaystyle 15ft?

 

Possible Answers:

\displaystyle 24ft

\displaystyle 20ft

\displaystyle 23ft

\displaystyle 21ft

\displaystyle 22ft

Correct answer:

\displaystyle 20ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 70=2l+2(15)

\displaystyle 70=2l+30

Subtract \displaystyle 30 from both sides

\displaystyle 70-30=2l+30-30

\displaystyle 40=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{40}{2}=\frac{2l}{2}

\displaystyle 20=l

Example Question #521 : Quadrilaterals

What is the length of a room with a perimeter of \displaystyle 72ft and a width of \displaystyle 15ft?

 

Possible Answers:

\displaystyle 25ft

\displaystyle 21ft

\displaystyle 24ft

\displaystyle 23ft

\displaystyle 22ft

Correct answer:

\displaystyle 21ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 72=2l+2(15)

\displaystyle 72=2l+30

Subtract \displaystyle 30 from both sides

\displaystyle 72-30=2l+30-30

\displaystyle 42=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{42}{2}=\frac{2l}{2}

\displaystyle 21=l

Example Question #172 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a yard with a perimeter of \displaystyle 12ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 6ft

\displaystyle 2ft

\displaystyle 4ft

\displaystyle 5ft

\displaystyle 3ft

Correct answer:

\displaystyle 3ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 12=2l+2(3)

\displaystyle 12=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 12-6=2l+6-6

\displaystyle 6=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{6}{2}=\frac{2l}{2}

\displaystyle 3=l

Example Question #173 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a yard with a perimeter of \displaystyle 24ft and a width of \displaystyle 3ft?

 

Possible Answers:

\displaystyle 8ft

\displaystyle 9ft

\displaystyle 7ft

\displaystyle 11ft

\displaystyle 10ft

Correct answer:

\displaystyle 9ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 24=2l+2(3)

\displaystyle 24=2l+6

Subtract \displaystyle 6 from both sides

\displaystyle 24-6=2l+6-6

\displaystyle 18=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{18}{2}=\frac{2l}{2}

\displaystyle 9=l

Learning Tools by Varsity Tutors