ISEE Middle Level Math : How to find the square root

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #271 : How To Find The Square Root

Solve:

\displaystyle \sqrt{169}-4=

Possible Answers:

\displaystyle 10

\displaystyle 9

\displaystyle 8

\displaystyle 7

Correct answer:

\displaystyle 9

Explanation:

First find the square root: \displaystyle \sqrt{169}=13

Then subtract: \displaystyle 13-4=9

Answer: \displaystyle 9

Example Question #272 : How To Find The Square Root

Solve:

\displaystyle \sqrt{49}-6=

Possible Answers:

\displaystyle 2

\displaystyle 13

\displaystyle 43

\displaystyle 1

Correct answer:

\displaystyle 1

Explanation:

First find the square root: \displaystyle \sqrt{49}=7

Then subtract: \displaystyle 7-6=1

Answer: \displaystyle 1

 

Example Question #273 : How To Find The Square Root

\displaystyle \sqrt{9}*\sqrt{169}=

Possible Answers:

\displaystyle 160

\displaystyle 39

\displaystyle 178

\displaystyle 26

Correct answer:

\displaystyle 39

Explanation:

First find the square roots:

\displaystyle \sqrt{9}=3

\displaystyle \sqrt{169}=13

Then multiply: \displaystyle 3*13=39

Answer: \displaystyle 39

Example Question #274 : How To Find The Square Root

\displaystyle \sqrt{64}*\sqrt{81}=

Possible Answers:

\displaystyle 78

\displaystyle 70

\displaystyle 72

\displaystyle 76

Correct answer:

\displaystyle 72

Explanation:

First find the square roots:

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{81}=9

Then multiply: \displaystyle 8*9=72

Answer: \displaystyle 72

Example Question #275 : How To Find The Square Root

\displaystyle \sqrt{100}*\sqrt{49}=

Possible Answers:

\displaystyle 7

\displaystyle 149

\displaystyle 70

\displaystyle 51

Correct answer:

\displaystyle 70

Explanation:

First find the square roots:

\displaystyle \sqrt{100}=10

\displaystyle \sqrt{49}=7

Then multiply: \displaystyle 10*7=70

Answer: \displaystyle 70

Example Question #276 : How To Find The Square Root

\displaystyle \sqrt{25}*\sqrt{169}=

Possible Answers:

\displaystyle 5

\displaystyle 18

\displaystyle 65

\displaystyle 13

Correct answer:

\displaystyle 65

Explanation:

First find the square roots:

\displaystyle \sqrt{25}=5

\displaystyle \sqrt{169}=13

Then find the product: \displaystyle 5*13=65

Answer: \displaystyle 65

 

Example Question #277 : How To Find The Square Root

Solve: 

\displaystyle \sqrt{49}(56)=

Possible Answers:

\displaystyle 392

\displaystyle 900

\displaystyle 390

\displaystyle 90

Correct answer:

\displaystyle 392

Explanation:

First, find the square root:

\displaystyle \sqrt{49}=7

Then find the product:

 \displaystyle 7(56)=392

Answer: \displaystyle 392

Example Question #278 : How To Find The Square Root

Solve:

\displaystyle 5^{2}*18=

Possible Answers:

\displaystyle 430

\displaystyle 410

\displaystyle 470

\displaystyle 450

Correct answer:

\displaystyle 450

Explanation:

First square 5:

 \displaystyle 5^{2}=25

Then multiply:

 \displaystyle 25*18=450

Answer: \displaystyle 450

Example Question #279 : Squares / Square Roots

Evaluate: 

\displaystyle \sqrt{\frac{100}{121}}

Possible Answers:

\displaystyle \frac{10}{11}

\displaystyle \sqrt{\frac{100}{121}} is undefined.

\displaystyle -\frac{10}{11}

\displaystyle -\frac{11}{10}

\displaystyle \frac{11}{10}

Correct answer:

\displaystyle \frac{10}{11}

Explanation:

To find the square root of a fraction, extract the square root of both the numerator and the denominator. Since \displaystyle 10 ^{2} = 10 \times 10 = 100\displaystyle \sqrt{100} = 10, and since \displaystyle 11^{2} = 121\displaystyle \sqrt{121} = 11. and

\displaystyle \sqrt{\frac{100}{121}} = \frac{\sqrt{100}}{\sqrt{121}} = \frac{10}{11}

Example Question #280 : Squares / Square Roots

Evaluate: 

\displaystyle \sqrt[3]{\frac{1}{125}}

Possible Answers:

\displaystyle -5

\displaystyle 5

\displaystyle \sqrt[3]{\frac{1}{125}} is undefined.

\displaystyle - \frac{1}{5}

\displaystyle \frac{1}{5}

Correct answer:

\displaystyle \frac{1}{5}

Explanation:

The cube root of a number is the quantity which, when raised to the power of 3, gives that number. 

To find the cube root of a fraction, extract the cube root of both the numerator and the denominator. Since \displaystyle 5 ^{3} = 5 \times 5 \times 5 = 125\displaystyle \sqrt[3]{125} = 5, and

.

Learning Tools by Varsity Tutors