ISEE Middle Level Math : How to find the square root

Study concepts, example questions & explanations for ISEE Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : How To Find The Square Root

\displaystyle \sqrt{49}\ast \sqrt{144}=

Possible Answers:

\displaystyle 5

\displaystyle 19

\displaystyle 193

\displaystyle 84

Correct answer:

\displaystyle 84

Explanation:

First find the square root of each number:

\displaystyle \sqrt{49}=7

\displaystyle \sqrt{144}=12

Then, solve accordingly:

\displaystyle 7*12=84

The answer is 84.

 

Example Question #12 : How To Find The Square Root

\displaystyle \sqrt{64}*\sqrt{121}*\sqrt{36}=

Possible Answers:

\displaystyle 221

\displaystyle 176

\displaystyle 528

\displaystyle 74

Correct answer:

\displaystyle 528

Explanation:

First, find the square root for each number:

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{121}=11

\displaystyle \sqrt{36}=6

Then, solve accordingly:

\displaystyle 8*11*6=528

The answer is 528.

Example Question #13 : Squares / Square Roots

Evaluate: \displaystyle \sqrt{576} + \sqrt{196}

Possible Answers:

\displaystyle 42

\displaystyle 40

\displaystyle 38

\displaystyle 48

\displaystyle 28

Correct answer:

\displaystyle 38

Explanation:

The square root of a number is the number which, when squared (multiplied by itself), yields that number.

\displaystyle 24 \cdot 24 = 576, so \displaystyle \sqrt{ 576} = 24

\displaystyle 14 \cdot 14 =196, so \displaystyle \sqrt{196 }= 14

\displaystyle \sqrt{ 576} + \sqrt{196 } = 24 + 14 = 38

Example Question #14 : Squares / Square Roots

Evaluate: \displaystyle \sqrt{-9} + \sqrt{16}

Possible Answers:

\displaystyle -7

\displaystyle 1

\displaystyle 7

\displaystyle \sqrt{-9} + \sqrt{16} is undefined in the set of real numbers.

\displaystyle -1

Correct answer:

\displaystyle \sqrt{-9} + \sqrt{16} is undefined in the set of real numbers.

Explanation:

Since negative numbers do not have square roots in the real number system, \displaystyle \sqrt{-9} is undefined - and, subsequently, so is \displaystyle \sqrt{-9} + \sqrt{16} - in the set of real numbers.

Example Question #13 : How To Find The Square Root

\displaystyle \sqrt{25}*\sqrt{49}*\sqrt{16}=

Possible Answers:

\displaystyle 140

\displaystyle 105

\displaystyle 120

\displaystyle 90

Correct answer:

\displaystyle 140

Explanation:

First, find the square root for each:

\displaystyle \sqrt{25}=5

\displaystyle \sqrt{49}=7

\displaystyle \sqrt{16}=4

Then, multiply: \displaystyle 5*7*4=140

Answer: 140.

Example Question #14 : How To Find The Square Root

What is the square root of \displaystyle \small 5625?

Possible Answers:

\displaystyle \small 65

\displaystyle \small 76

\displaystyle \small 74

\displaystyle \small 75

\displaystyle 85

Correct answer:

\displaystyle \small 75

Explanation:

In order to find the square root of 5625, we must find a number that when multiplied by itself, gives a product of 5625.  Since \displaystyle \small 75\cdot 75=5625, our answer is \displaystyle \small 75.

Example Question #17 : Squares / Square Roots

What is the square root of the sum of \displaystyle \small 25 and \displaystyle \small 75?

Possible Answers:

\displaystyle \small 20

\displaystyle \small 15

\displaystyle \small 12

\displaystyle \small 11

\displaystyle \small 10

Correct answer:

\displaystyle \small 10

Explanation:

In order to find the square root of the sum of \displaystyle \small 25 and \displaystyle \small 75, we must first find the sum by adding them together.  \displaystyle \small 25+75=100

Next we must find a number that when multiplied by itself yields a product of 100.  Since \displaystyle \small 10\cdot 10=100, our answer is \displaystyle 10.

Example Question #15 : How To Find The Square Root

\displaystyle \frac{\sqrt{121}*5}{\sqrt{25}}=

Possible Answers:

\displaystyle 5

\displaystyle 11

\displaystyle 55

\displaystyle 25

Correct answer:

\displaystyle 11

Explanation:

First, find the square roots:

\displaystyle \sqrt{121}=11

\displaystyle \sqrt{25}=5

Then, solve accordingly:

\displaystyle \frac{11*5}{5}=\frac{55}{5}=11

Example Question #16 : How To Find The Square Root

\displaystyle \sqrt{81}*\sqrt{49} *\sqrt{4}=

Possible Answers:

\displaystyle 126

\displaystyle 100

\displaystyle 120

\displaystyle 110

Correct answer:

\displaystyle 126

Explanation:

FIrst, find the square roots:

\displaystyle \sqrt{81}=9

\displaystyle \sqrt{49}=7

\displaystyle \sqrt{4}=2

Then solve accordingly:

\displaystyle 9*7*2=126

 

Example Question #17 : How To Find The Square Root

\displaystyle \sqrt{64}\div \sqrt{16}=

Possible Answers:

\displaystyle 2

\displaystyle 6

\displaystyle 8

\displaystyle 4

Correct answer:

\displaystyle 2

Explanation:

First, solve the square roots:

\displaystyle \sqrt{64}=8

\displaystyle \sqrt{16}=4

Then, solve accordingly:

\displaystyle 8\div 4=2

 

Learning Tools by Varsity Tutors