ISEE Lower Level Quantitative : How to find the points on a coordinate plane

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move up \(\displaystyle 2\) and to the left \(\displaystyle 7\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (5,12)\)

\(\displaystyle (7,6)\)

\(\displaystyle (7,6)\)

\(\displaystyle (12,5)\)

\(\displaystyle (6,7)\)

Correct answer:

\(\displaystyle (5,12)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving up \(\displaystyle 2\), we can add \(\displaystyle 2\) to our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 7\) we can subtract \(\displaystyle 7\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10+2=12\)

\(\displaystyle 12-7=5\)

\(\displaystyle (5,12)\)

Example Question #11 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move up \(\displaystyle 5\) and to the left \(\displaystyle 4\), what is your new point?

 Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (12,20)\)

\(\displaystyle (8,15)\)

\(\displaystyle (18,7)\)

\(\displaystyle (7,18)\)

\(\displaystyle (14,5)\)

Correct answer:

\(\displaystyle (8,15)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving up \(\displaystyle 5\), we can add \(\displaystyle 5\) to our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 4\) we can subtract \(\displaystyle 4\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10+5=15\)

\(\displaystyle 12-4=8\)

\(\displaystyle (8,15)\)

Example Question #13 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move up \(\displaystyle 10\) and to the left \(\displaystyle 6\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (18,7)\)

\(\displaystyle (7,18)\)

\(\displaystyle (20,8)\)

\(\displaystyle (16,5)\)

\(\displaystyle (6,20)\)

Correct answer:

\(\displaystyle (6,20)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving up \(\displaystyle 10\), we can add \(\displaystyle 10\) to our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 6\) we can subtract \(\displaystyle 6\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10+10=20\)

\(\displaystyle 12-6=6\)

\(\displaystyle (6,20)\)

Example Question #14 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move down \(\displaystyle 2\) and to the left \(\displaystyle 7\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (6,18)\)

\(\displaystyle (5,8)\)

\(\displaystyle (8,5)\)

\(\displaystyle (17,2)\)

\(\displaystyle (13,4)\)

Correct answer:

\(\displaystyle (5,8)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 2\), we can subtract \(\displaystyle 2\) from our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 7\) we can subtract \(\displaystyle 7\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-2=8\)

\(\displaystyle 12-7=5\)

\(\displaystyle (5,8)\)

Example Question #15 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move down \(\displaystyle 5\) and to the left \(\displaystyle 5\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (2,4)\)

\(\displaystyle (7,5)\)

\(\displaystyle (7,4)\)

\(\displaystyle (6,4)\)

\(\displaystyle (3,9)\)

Correct answer:

\(\displaystyle (7,5)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 5\), we can subtract \(\displaystyle 5\) from our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 5\) we can subtract \(\displaystyle 5\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-5=5\)

\(\displaystyle 12-5=7\)

\(\displaystyle (7,5)\)

Example Question #12 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move down \(\displaystyle 9\) and to the left \(\displaystyle 2\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

 

Possible Answers:

\(\displaystyle (10,0)\)

\(\displaystyle (9,3)\)

\(\displaystyle (6,9)\)

\(\displaystyle (10,1)\)

\(\displaystyle (8,3)\)

Correct answer:

\(\displaystyle (10,1)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 9\), we can subtract \(\displaystyle 9\) from our \(\displaystyle y\) coordinate point and because we are moving to the left \(\displaystyle 2\) we can subtract \(\displaystyle 2\) from our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-9=1\)

\(\displaystyle 12-2=10\)

\(\displaystyle (10,1)\)

Example Question #17 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move down \(\displaystyle 2\) and to the right \(\displaystyle 7\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (8,19)\)

\(\displaystyle (19,8)\)

\(\displaystyle (13,2)\)

\(\displaystyle (17,6)\)

\(\displaystyle (6,17)\)

Correct answer:

\(\displaystyle (19,8)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 2\), we can subtract \(\displaystyle 2\) from our \(\displaystyle y\) coordinate point and because we are moving to the right \(\displaystyle 7\) we can add \(\displaystyle 7\) to our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-2=8\)

\(\displaystyle 12+7=19\)

\(\displaystyle (19,8)\)

Example Question #18 : Graph And Interpret Points On A Coordinate Plane: Ccss.Math.Content.5.G.A.2

Starting at the coordinate point shown below, if you move down \(\displaystyle 6\) and to the right \(\displaystyle 4\), what is your new point? 


Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (10,9)\)

\(\displaystyle (18,2)\)

\(\displaystyle (16,4)\)

\(\displaystyle (11,7)\)

\(\displaystyle (12,6)\)

Correct answer:

\(\displaystyle (16,4)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 6\), we can subtract \(\displaystyle 6\) from our \(\displaystyle y\) coordinate point and because we are moving to the right \(\displaystyle 4\) we can add \(\displaystyle 4\) to our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-6=4\)

\(\displaystyle 12+4=16\)

\(\displaystyle (16,4)\)

Example Question #591 : Ssat Upper Level Quantitative (Math)

Starting at the coordinate point shown below, if you move down \(\displaystyle 8\) and to the right \(\displaystyle 3\), what is your new point? 


Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (17,2)\)

\(\displaystyle (18,3)\)

\(\displaystyle (15,7)\)

\(\displaystyle (15,2)\)

\(\displaystyle (19,6)\)

Correct answer:

\(\displaystyle (15,2)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving down \(\displaystyle 8\), we can subtract \(\displaystyle 8\) from our \(\displaystyle y\) coordinate point and because we are moving to the right \(\displaystyle 3\) we can add \(\displaystyle 3\) to our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10-8=2\)

\(\displaystyle 12+3=15\)

\(\displaystyle (15,2)\)

Example Question #595 : Ssat Upper Level Quantitative (Math)

Starting at the coordinate point shown below, if you move up \(\displaystyle 2\) and to the right \(\displaystyle 7\), what is your new point? 

Screen shot 2015 07 30 at 9.21.38 am

Possible Answers:

\(\displaystyle (15,13)\)

\(\displaystyle (12,17)\)

\(\displaystyle (13,15)\)

\(\displaystyle (19,12)\)

\(\displaystyle (9,6)\)

Correct answer:

\(\displaystyle (19,12)\)

Explanation:

The starting point is at \(\displaystyle (12,10)\). When we move up or down we are moving along the \(\displaystyle y\)-axis. When we move to the right or left we are moving along the \(\displaystyle x\)-axis. 

Moving up the \(\displaystyle y\)-axis and moving right on the \(\displaystyle x\)-axis means addition. 

Moving down the \(\displaystyle y\)-axis and moving left on the \(\displaystyle x-\)axis means subtraction. 

Because we are moving up \(\displaystyle 2\), we can add \(\displaystyle 2\) to our \(\displaystyle y\) coordinate point and because we are moving to the right \(\displaystyle 7\) we can add \(\displaystyle 7\) to our \(\displaystyle x\)coordinate point. 

\(\displaystyle 10+2=12\)

\(\displaystyle 12+7=19\)

\(\displaystyle (19,12)\)

Learning Tools by Varsity Tutors