ISEE Lower Level Quantitative : How to find length of a line

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Length Of A Line

On a number line, what is the length of a line that stretches from \dpi{100} -3\(\displaystyle \dpi{100} -3\) to \dpi{100} 13\(\displaystyle \dpi{100} 13\)?

Possible Answers:

\dpi{100} 3\(\displaystyle \dpi{100} 3\)

\dpi{100} 16\(\displaystyle \dpi{100} 16\)

\dpi{100} 10\(\displaystyle \dpi{100} 10\)

\dpi{100} 13\(\displaystyle \dpi{100} 13\)

Correct answer:

\dpi{100} 16\(\displaystyle \dpi{100} 16\)

Explanation:

\dpi{100} -3\(\displaystyle \dpi{100} -3\) is \dpi{100} 3\(\displaystyle \dpi{100} 3\) units to the left of zero on the number line.  \dpi{100} 13\(\displaystyle \dpi{100} 13\) is \dpi{100} 13\(\displaystyle \dpi{100} 13\) units to the right of zero on the number line.

The length of the line would then be \dpi{100} 13+ 3=16\(\displaystyle \dpi{100} 13+ 3=16\).

Example Question #1 : How To Find Length Of A Line

If the radius of a circle is equal to \(\displaystyle \frac{1}{4}x\), then what is the value of the diameter?

Possible Answers:

\(\displaystyle 2x\)

\(\displaystyle x\)

\(\displaystyle \frac{1}{4}x\)

\(\displaystyle \frac{1}{2}x\)

Correct answer:

\(\displaystyle \frac{1}{2}x\)

Explanation:

The length of a dimater is twice the length of the radius. Given that the length of the radius is \(\displaystyle \frac{1}{4}x\), the dimater will be equal to \(\displaystyle \frac{1}{4}x\cdot2=\frac{2}{4}x=\frac{1}{2}x\).

Example Question #3 : How To Find Length Of A Line

The length of \(\displaystyle AD\) is \(\displaystyle x\) and the length of \(\displaystyle AC\) is \(\displaystyle y\).

 

Screenshot_2015-03-29_at_2.20.22_pm

What is the length of \(\displaystyle CD\) in terms of \(\displaystyle x\) and \(\displaystyle y\)?

Possible Answers:

\(\displaystyle x^2\)

\(\displaystyle x+y\)

\(\displaystyle y-x\)

\(\displaystyle x-y\)

\(\displaystyle y+x\)

Correct answer:

\(\displaystyle x-y\)

Explanation:

Using the segment addition postulate, we know that \(\displaystyle AC+CD=AD\).  We can substitute \(\displaystyle x\) and \(\displaystyle y\) for \(\displaystyle AC\) and \(\displaystyle AD\) and solve for \(\displaystyle CD\).

 

Substitute:                           \(\displaystyle y+CD=x\)

Subtract y from both sides:   \(\displaystyle -y\)           \(\displaystyle -y\)

Simplify:                              \(\displaystyle CD=x-y\)

Example Question #4 : How To Find Length Of A Line

The length of BC is x and the length of CE is y.

Screenshot_2015-03-29_at_2.20.22_pm

What is the length of segment \(\displaystyle BE\)?

Possible Answers:

\(\displaystyle x+y\)

\(\displaystyle y-x\)

\(\displaystyle x\cdot y\)

\(\displaystyle x-y\)

\(\displaystyle x+x+y+y\)

Correct answer:

\(\displaystyle x+y\)

Explanation:

Segments \(\displaystyle BC\) and \(\displaystyle CE\) make up segment \(\displaystyle BE\).  Using the segment addition postulate, add the lengths of \(\displaystyle BC\) and \(\displaystyle CE\) to find the length of \(\displaystyle BE\).

\(\displaystyle BC+CE=BE\)

Substitute \(\displaystyle x\) and \(\displaystyle y\):  \(\displaystyle x+y=BE\)

Example Question #5 : How To Find Length Of A Line

The length of \(\displaystyle AD\) is \(\displaystyle x\) and the length of \(\displaystyle AE\) is \(\displaystyle y\).

 

Screenshot_2015-03-29_at_2.20.22_pm

What is the length of segment \(\displaystyle DE\)?

Possible Answers:

\(\displaystyle x+y\)

\(\displaystyle y-x\)

\(\displaystyle 2\cdot x\)

\(\displaystyle x-y\)

\(\displaystyle x\cdot y\)

Correct answer:

\(\displaystyle y-x\)

Explanation:

Using the segment addition postulate, we know that \(\displaystyle AD+DE=AE\).  We can substitute \(\displaystyle x\) and \(\displaystyle y\) for \(\displaystyle AD\) and \(\displaystyle AE\) and solve for \(\displaystyle DE\).

 

Substitute:                           \(\displaystyle x+DE=y\)

Subtract y from both sides:   \(\displaystyle -x\)                 \(\displaystyle -x\)

Simplify:                              \(\displaystyle DE=y-x\)

Example Question #6 : How To Find Length Of A Line

The length of \(\displaystyle BD\) is \(\displaystyle x\) and the length of \(\displaystyle AB\) is \(\displaystyle y\).

Screenshot_2015-03-29_at_2.20.22_pm

What is the length of segment \(\displaystyle AD\) in terms of \(\displaystyle x\) and \(\displaystyle y\)?

Possible Answers:

\(\displaystyle x+y\)

\(\displaystyle x\cdot y\)

\(\displaystyle y-x\)

\(\displaystyle 2\cdot y\)

\(\displaystyle x-y\)

Correct answer:

\(\displaystyle x+y\)

Explanation:

Segments \(\displaystyle AB\) and \(\displaystyle BD\) make up segment \(\displaystyle AD\). Using the segment addition postulate, add the lengths of \(\displaystyle AB\) and \(\displaystyle BD\) to find the length of \(\displaystyle AD\).

\(\displaystyle AB+BD=AD\)

Substitute \(\displaystyle x\) and \(\displaystyle y\): \(\displaystyle x+y=AD\)

Learning Tools by Varsity Tutors