Intermediate Geometry : Other Lines

Study concepts, example questions & explanations for Intermediate Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Equation Of A Line

What is the equation of a line with a slope of  and an -intercept of ?

Possible Answers:

Correct answer:

Explanation:

The -intercept is the value of  when the  value is equal to zero. The actual point located on the graph for an -intercept of  is . The slope, , is 2.

Write the slope-intercept equation and substitute the point and slope to solve for the -intercept:

Plug the slope and -intercept back in the slope-intercept formula:

Example Question #2 : How To Find The Equation Of A Line

A line goes through the following points  and .

Find the equation of the line.

Possible Answers:

Correct answer:

Explanation:

First, find the slope of the line using the slope formula: 

.

Next we plug one of the points, and the slope, into the point-intercept line forumula:

  where m is our slope.

Then  and when we plug in point (2,3) the formula reads  then solve for b. 

.

To find the equation of the line, we plug in our m and b into the slope-intercept equation.

So,  or simplified, .

Example Question #4 : How To Find The Equation Of A Line

Write the equation for the line passing through the points  and 

Possible Answers:

Correct answer:

Explanation:

To determine the equation, first find the slope:

We want this equation in slope-intercept form, . We know  and  because we have two coordinate pairs to choose from representing an  and a . We know  because that represents the slope. We just need to solve for , and then we can write the equation.

We can choose either point and get the correct answer. Let's choose 

multiply ""

add  to both sides

This means that the form is

 

Example Question #1 : How To Find The Equation Of A Line

Write the equation for a line that passes through the points and .

Possible Answers:

Correct answer:

Explanation:

To determine the equation, first find the slope:

We want this equation in slope-intercept form, . We know  and  because we have two coordinate pairs to choose from representing an  and a . We know  because that represents the slope. We just need to solve for , and then we can write the equation.

We can choose either point and get the correct answer. Let's choose

 multiply ""

subtract  from both sides

This means that the form is 

Example Question #2 : How To Find The Equation Of A Line

Find the equation for a line passing through the points and .

Possible Answers:

Correct answer:

Explanation:

To determine the equation, first find the slope:

We want this equation in slope-intercept form, . We know  and  because we have two coordinate pairs to choose from representing an  and a  . We know  because that represents the slope. We just need to solve for , and then we can write the equation.

We can choose either point and get the correct answer. Let's choose

 multiply ""

 subtract  from both sides

This means that the form is 

Example Question #102 : Lines

Find the equation for the line passing through the points and .

Possible Answers:

Correct answer:

Explanation:

To determine the equation, first find the slope:

We want this equation in slope-intercept form, . We know  and  because we have two coordinate pairs to choose from representing an  and a . We know  because that represents the slope. We just need to solve for , and then we can write the equation.

We can choose either point and get the correct answer. Let's choose

 multiply ""

subtract  from both sides

This means that the form is 

Example Question #1391 : Intermediate Geometry

Find the equation for the line passing through the points and .

Possible Answers:

Correct answer:

Explanation:

First, determine the slope of the line using the slope formula:

The equation will be in the form where m is the slope that we just determined, and b is the y-intercept. To determine that, we can plug in the slope for m and the coordinates of one of the original points for x and y:

to subtract, it will be easier to convert 3 to a fraction,

The equation is

Example Question #11 : How To Find The Equation Of A Line

Write the equation for the line passing through the points and .

Possible Answers:

Correct answer:

Explanation:

First, find the slope of the line:

Now we want to find the y-intercept. We can figure this out by plugging in the slope for "m" and one of the points in for x and y in the formula :

The equation is

Example Question #111 : Coordinate Geometry

Find the equation of a line passing through the points  and .

Possible Answers:

None of these.

Correct answer:

Explanation:

To find the equation of a line passing through these points we must find a line with that same slope. Start by finding the slope between the two points and then use the point slope equation to find the equation of the line.

slope:

Now use the point slope equation:

*make sure you use the SAME coordinate pair when substituting x and y into the point slope equation.

Example Question #112 : Lines

Find the equation of a line that goes through the points  and .

Possible Answers:

Correct answer:

Explanation:

Recall that the slope-intercept form of a line:

,

where  and .

First, find the slope of the line by using the following formula:

Next, find the y-intercept of the line by plugging in  of the points into the semi-completed formula.

Plugging in  yields the following:

Solve for .

The equation of the line is then .

 

Learning Tools by Varsity Tutors