All HSPT Math Resources
Example Questions
Example Question #1331 : Concepts
The height of a cylinder is 3 inches and the radius of the circular end of the cylinder is 3 inches. Give the volume and surface area of the cylinder.
The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height or:
where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:
The surface area of the cylinder is given by:
where is the surface area of the cylinder, is the radius of the cylinder and is the height of the cylinder. So we can write:
Example Question #1332 : Concepts
The end (base) of a cylinder has an area of square inches. If the height of the cylinder is half of the radius of the base of the cylinder, give the volume of the cylinder.
The area of the end (base) of a cylinder is , so we can write:
The height of the cylinder is half of the radius of the base of the cylinder, that means:
The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height:
or
Example Question #3 : How To Find The Volume Of A Cylinder
We have two right cylinders. The radius of the base Cylinder 1 is times more than that of Cylinder 2, and the height of Cylinder 2 is 4 times more than the height of Cylinder 1. The volume of Cylinder 1 is what fraction of the volume of Cylinder 2?
The volume of a cylinder is:
where is the volume of the cylinder, is the radius of the circular end of the cylinder, and is the height of the cylinder.
So we can write:
and
Now we can summarize the given information:
Now substitute them in the formula:
Example Question #1333 : Concepts
Two right cylinders have the same height. The radius of the base of the first cylinder is two times more than that of the second cylinder. Compare the volume of the two cylinders.
The volume of a cylinder is:
where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:
We know that
and
.
So we can write:
Example Question #1 : Volume Of A Sphere
A car dealership wants to fill a large spherical advertising ballon with helium. It can afford to buy 1,000 cubic yards of helium to fill this balloon. What is the greatest possible diameter of that balloon (nearest tenth of a yard)?
The volume of a sphere, given its radius, is
Set , solve for , and double that to get the diameter.
The diameter is twice this, or 12.4 yards.
Example Question #1 : Volume Of A Three Dimensional Figure
The diameter of a sphere is . Give the volume of the sphere in terms of .
The diameter of a sphere is so the radius of the sphere would be
The volume enclosed by a sphere is given by the formula:
Example Question #1334 : Concepts
A spherical balloon has a diameter of 10 meters. Give the volume of the balloon.
The volume enclosed by a sphere is given by the formula:
where is the radius of the sphere. The diameter of the balloon is 10 meters so the radius of the sphere would be meters. Now we can get:
Example Question #3 : Volume Of A Three Dimensional Figure
The volume of a sphere is 1000 cubic inches. What is the diameter of the sphere.
The volume of a sphere is:
Where is the radius of the sphere. We know the volume and can solve the formula for :
inches
So we can get:
Example Question #1335 : Concepts
Give the volume of the above box in cubic centimeters.
100 centimeters make one meter, so convert each of the dimensions of the box by multiplying by 100.
centimeters
centimeters
Use the volume formula, substituting :
cubic centimeters
Example Question #1 : Solid Geometry
A cube made of nickel has sidelength 20 centimeters, Nickel has a density of 8.9 grams per cubic centimeter. What is the mass of this cube?
The volume of the cube is cubic centimeters. Multiply by the number of grams per cubic centimeter to get grams, or kilograms.