HSPT Math : Geometry

Study concepts, example questions & explanations for HSPT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Plane Geometry

Varsity_question

AB and CD are two parrellel lines intersected by line EF. If the measure of angle 1 is , what is the measure of angle 2? 

Possible Answers:

Correct answer:

Explanation:

The angles are equal. When two parallel lines are intersected by a transversal, the corresponding angles have the same measure.  

Example Question #5 : How To Find An Angle Of A Line

Lines A and B in the diagram below are parallel. The triangle at the bottom of the figure is an isosceles triangle.

Act2

What is the degree measure of angle ?

Possible Answers:

Correct answer:

Explanation:

Since A and B are parallel, and the triangle is isosceles, we can use the supplementary rule for the two angles,  and  which will sum up to . Setting up an algebraic equation for this, we get . Solving for , we get . With this, we can get either  (for the smaller angle) or  (for the larger angle - must then use supplementary rule again for inner smaller angle). Either way, we find that the inner angles at the top are 80 degrees each. Since the sum of the angles within a triangle must equal 180, we can set up the equation as

 degrees.

Example Question #1 : How To Find An Angle In A Trapezoid

Find the measure of angle  in the isosceles trapezoid pictured below.

Screen_shot_2013-03-18_at_3.32.40_pm

 

Possible Answers:

Correct answer:

Explanation:

The sum of the angles in any quadrilateral is 360°, and the properties of an isosceles trapezoid dictate that the sets of angles adjoined by parallel lines (in this case, the bottom set and top set of angles) are equal. Subtracting 2(72°) from 360° gives the sum of the two top angles, and dividing the resulting 216° by 2 yields the measurement of x, which is 108°.

Example Question #231 : Geometry

Two interior angles in an obtuse triangle measure 123^{\circ} and 11^{\circ}. What is the measurement of the third angle. 

Possible Answers:

50^{\circ}

123^{\circ}

46^{\circ}

104^{\circ}

57^{\circ}

Correct answer:

46^{\circ}

Explanation:

Interior angles of a triangle always add up to 180 degrees. 

Example Question #1 : How To Find An Angle In An Acute / Obtuse Triangle

In the triangle below, AB=BC (figure is not to scale) .  If angle A is 41°, what is the measure of angle B?

                                       A (Angle A = 41°)

                                       Act_math_108_02               

                                     B                           C

 

Possible Answers:

41

82

98

90

Correct answer:

98

Explanation:

  If angle A is 41°, then angle C must also be 41°, since AB=BC.  So, the sum of these 2 angles is:

41° + 41° = 82°

Since the sum of the angles in a triangle is 180°, you can find out the measure of the remaining angle by subtracting 82 from 180:

180° - 82° = 98°

 

 

Example Question #1 : How To Find An Angle In An Acute / Obtuse Triangle

Points A, B, C, D are collinear. The measure of ∠ DCE is 130° and of ∠ AEC is 80°. Find the measure of ∠ EAD.

Screen_shot_2013-03-18_at_3.27.08_pm

Possible Answers:

80°

60°

50°

70°

Correct answer:

50°

Explanation:

To solve this question, you need to remember that the sum of the angles in a triangle is 180°. You also need to remember supplementary angles. If you know what ∠ DCE is, you also know what ∠ ECA is. Hence you know two angles of the triangle, 180°-80°-50°= 50°. 

Example Question #81 : Triangles

Triangles

Points A, B, and C are collinear (they lie along the same line). The measure of angle CAD is 30^{\circ}. The measure of angle CBD is 60^{\circ}. The length of segment \overline{AD} is 4.

Find the measure of \dpi{100} \small \angle ADB.

Possible Answers:

30^{\circ}

90^{\circ}

15^{\circ}

45^{\circ}

60^{\circ}

Correct answer:

30^{\circ}

Explanation:

The measure of \dpi{100} \small \angle ADB is 30^{\circ}. Since \dpi{100} \small A, \dpi{100} \small B, and \dpi{100} \small C are collinear, and the measure of \dpi{100} \small \angle CBD is 60^{\circ}, we know that the measure of \dpi{100} \small \angle ABD is 120^{\circ}.

Because the measures of the three angles in a triangle must add up to 180^{\circ}, and two of the angles in triangle \dpi{100} \small ABD are 30^{\circ} and 120^{\circ}, the third angle, \dpi{100} \small \angle ADB, is 30^{\circ}.

Example Question #2 : Acute / Obtuse Isosceles Triangles

Points A and B lie on a circle centered at Z, where central angle <AZB measures 140°. What is the measure of angle <ZAB?

 

Possible Answers:

25°

Cannot be determined from the given information

15°

20°

30°

Correct answer:

20°

Explanation:

Because line segments ZA and ZB are radii of the circle, they must have the same length. That makes triangle ABZ an isosceles triangle, with <ZAB and <ZBA having the same measure. Because the three angles of a triangle must sum to 180°, you can express this in the equation:

140 + 2x = 180 --> 2x = 40 --> x = 20

 

 

 

Example Question #235 : Geometry

Triangle FGH has equal lengths for FG and GH; what is the measure of F, if G measures 40 degrees? 

Possible Answers:

None of the other answers

70 degrees

140 degrees

40 degrees

100 degrees

Correct answer:

70 degrees

Explanation:

It's good to draw a diagram for this; we know that it's an isosceles triangle; remember that the angles of a triangle total 180 degrees.

Angle G for this triangle is the one angle that doesn't correspond to an equal side of the isosceles triangle (opposite side to the angle), so that means F = H, and that F + H + 40 = 180,

By substitution we find that F * 2 = 140 and angle F = 70 degrees. 

Example Question #236 : Geometry

The vertex angle of an isosceles triangle is .  What is the base angle?

Possible Answers:

Correct answer:

Explanation:

An isosceles triangle has two congruent base angles and one vertex angle.  Each triangle contains .  Let  = base angle, so the equation becomes .  Solving for  gives

Learning Tools by Varsity Tutors