All HSPT Math Resources
Example Questions
Example Question #781 : New Sat
A student creates a challenge for his friend. He first draws a square, the adds the line for each of the 2 diagonals. Finally, he asks his friend to draw the circle that has the most intersections possible.
How many intersections will this circle have?
Example Question #1 : Geometry
Two pairs of parallel lines intersect:
If A = 135o, what is 2*|B-C| = ?
170°
160°
150°
140°
180°
180°
By properties of parallel lines A+B = 180o, B = 45o, C = A = 135o, so 2*|B-C| = 2* |45-135| = 180o
Example Question #1 : Geometry
Lines and are parallel. , , is a right triangle, and has a length of 10. What is the length of
Not enough information.
Since we know opposite angles are equal, it follows that angle and .
Imagine a parallel line passing through point . The imaginary line would make opposite angles with & , the sum of which would equal . Therefore, .
Example Question #1 : Plane Geometry
If measures , which of the following is equivalent to the measure of the supplement of ?
When the measure of an angle is added to the measure of its supplement, the result is always 180 degrees. Put differently, two angles are said to be supplementary if the sum of their measures is 180 degrees. For example, two angles whose measures are 50 degrees and 130 degrees are supplementary, because the sum of 50 and 130 degrees is 180 degrees. We can thus write the following equation:
Subtract 40 from both sides.
Add to both sides.
The answer is .
Example Question #1 : Geometry
In the following diagram, lines and are parallel to each other. What is the value for ?
It cannot be determined
When two parallel lines are intersected by another line, the sum of the measures of the interior angles on the same side of the line is 180°. Therefore, the sum of the angle that is labeled as 100° and angle y is 180°. As a result, angle y is 80°.
Another property of two parallel lines that are intersected by a third line is that the corresponding angles are congruent. So, the measurement of angle x is equal to the measurement of angle y, which is 80°.
Example Question #1 : How To Find An Angle
Examine the above diagram. If , give in terms of .
The two marked angles are same-side exterior angles of parallel lines, which are supplementary - that is, their measures have sum 180. We can solve for in this equation:
Example Question #2 : How To Find An Angle
Examine the above diagram. If , give in terms of .
The two marked angles are same-side interior angles of parallel lines, which are supplementary - that is, their measures have sum 180. We can solve for in this equation:
Example Question #3 : How To Find An Angle
Examine the above diagram. What is ?
By angle addition,
Example Question #251 : Geometry
Examine the above diagram. Which of the following statements must be true whether or not and are parallel?
Four statements can be eliminated by the various parallel theorems and postulates. Congruence of alternate interior angles or corresponding angles forces the lines to be parallel, so
and
.
Also, if same-side interior angles or same-side exterior angles are supplementary, the lines are parallel, so
and
.
However, whether or not since they are vertical angles, which are always congruent.
Example Question #5 : How To Find An Angle
and are supplementary; and are complementary.
.
What is ?
Supplementary angles and complementary angles have measures totaling and , respectively.
, so its supplement has measure
, the complement of , has measure
Certified Tutor
Certified Tutor