All HiSET: Math Resources
Example Questions
Example Question #2 : Calculation Of Measures Of Center
Consider the data set
Of the mean, the median, the mode, and the midrange of the data set, which is the least?
The median is the least of the four.
The median and the mode tie for being the least of the four.
The median and the midrange tie for being the least of the four.
The midrange is the least of the four.
The mode is the least of the four.
The median and the mode tie for being the least of the four.
The mean of a data set is equal to the sum of the terms divided by the number of terms, which here is 9. Therefore,
The median of a data set with an odd number of terms is the term that falls in the middle when the terms are ordered. The terms are already ordered:
so the element that falls in the middle is 12.
The mode of the data set is the term that occurs most frequently, which is 12.
The midrange is the mean of the least and greatest elements, which is
.
Of the four - mean, median, mode, and midrange - the median and the mode tie for being the least.
Example Question #1 : Generalizing Information About A Population From A Sample Of The Population
Researchers want to find the average age of indigenous people who inhabit a remote island. It is believed that the people of this island live abnormally long lives, so the average age of people is higher than in the rest of the world. The previously reported average age of people on the island is 47 years.
Researchers wanted to test the validity of this claim. They took a random sample of 50 people on the island and found that the average age of the sample was 28.5 years.
Which of the following statements can best be made, given the findings?
The average age of people on the island is the same as the rest of the world.
50 people on the island have ages between 28 and 29 years.
It is very likely that the average age of people on the island is actually much lower than previously reported.
The average age of the indigenous people on the island is 28.5 years
The average age of indigenous people on the island is between 28 and 29 years.
It is very likely that the average age of people on the island is actually much lower than previously reported.
From the question, we know the average age from a random sample of 50 people was 28.5 years; however, because this data is only from a random sampling of people, it is difficult to say anything certain about the entire population.
While it seems that the previously reported age is wrong, and that the average age of people on the island is likely around 29, it is impossible to say for certain what the average age actually is without gathering data for every single person on the island.
With findings from a random sample, you can draw conclusions about what is likely.
It is likely that the actual average age is lower than the previously reported average age; however, without data for every single person in the population, statements that are certain, such as, "The average age of the indigenous people on the island is 28.5 years," cannot be made.
Note that the statement, "The average age of indigenous people on the island is between 28 and 29 years," is a certain statement, even though it does not give an exact value for the average. Even though researchers found an average age of 28.5 years, it is still very possible that the actual average age is outside the range of 28 to 29.
Therefore, the statement, "It is very likely that the average age of people on the island is actually much lower than previously reported," is the answer because it does not try to make any certain claims and the conclusion is supported by the findings.
Example Question #33 : Data Analysis, Probability, And Statistics
An ad campaign was run at 1200 fast food franchise locations. Two weeks later, a random sample of revenue of 80 locations was taken to measure the effectiveness of the ad campaign. Of the 80 locations, 60 locations reported increased sales.
Which of the following statements can be made with the greatest certainty?
Exactly 75% of franchise locations experienced increased sales in the last two weeks.
It is very likely that less than half of all franchise locations experienced increased sales in the last two weeks.
It is very likely that more than half of all franchise locations experienced increased sales in the last two weeks.
It is very likely that at least half of all franchise locations did not experience increased sales in the last two weeks.
At least 75% of all franchise locations did not experience increased sales in the last two weeks.
It is very likely that more than half of all franchise locations experienced increased sales in the last two weeks.
From the question, we know that 60 out of a random sample of 80 locations experienced increased sales in the last two weeks; however, because this data is only from a random sampling of locations, it is difficult to say anything absolute about the population (all of the locations).
While 75% of the random sample did experience increased sales, we cannot know for certain what portion of the entire population experienced increased sales. What we can conclude from this data is that it is likely that the percentage of restaurants that experienced increased sales is roughly around 75%.
Therefore, the statement that can be made with the most certainty is that "It is very likely that more than half of all franchise locations experienced increased sales in the last two weeks."
Example Question #221 : Hi Set: High School Equivalency Test: Math
Identify the terms in the following equation:
All of these
All of these
In an equation, a term is a single number or a variable. in our equation we have the following terms:
Example Question #2 : Algebraic Concepts
How many terms are in the following expression: ?
None of the Above
Step 1: We need to separate and arrange the terms in the jumbled expression given to us in the question..
We will separate the terms by the exponent value.
For , there is only one term:
For , there are no terms.
For , there is two terms:
For , there are two terms:
For , there are two terms:
For , there is only one term:
For , there are two terms:
For , there are three terms:
There are four constant terms:
Step 2: We will now add up the coefficients in each designation of terms. This will give us the answer.
Example Question #222 : Hi Set: High School Equivalency Test: Math
Simplify the polynomial
.
How many terms does the simplified form have?
Two
Six
Five
Four
Three
Four
Arrange and combine like terms (those with the same variable) as follows:
Since each term now has a different exponent for the variable, no further combining is possible. The simplified form has four terms.
Example Question #2 : Interpret Parts Of An Expression
Identify the coefficients in the following formula:
All of these
All of these
Generally speaking, in an equation a coefficient is a constant by which a variable is multiplied. For example, and are coefficients in the following equation:
In our equation, the following numbers are coefficients:
Example Question #3 : Algebraic Concepts
What is the coefficient of the second highest term in the expression: ?
Step 1: Rearrange the terms from highest power to lowest power.
We will get: .
Step 2: We count the second term from starting from the left since it is the second highest term in the rearranged expression.
Step 3: Isolate the term.
The second term is
Step 4: Find the coefficient. The coefficient of a term is considered as the number before any variables. In this case, the coefficient is .
So, the answer is .
Example Question #1 : Polynomials
Add these two expressions together: and .
Step 1: Add the terms based on their similarities...
and becomes .
and becomes .
and becomes
Step 2: Combine all the terms after "becomes" in step 1...
We add and get: .
Example Question #2 : Algebraic Concepts
Subtract and .
Step 1: Subtract these terms by separating by exponents...
Step 2: Add all the simplified terms together...