All High School Math Resources
Example Questions
Example Question #4 : Solid Geometry
Find the volume of the following cone.
The formula for the volume of a cone is:
Where is the radius of the cone and is the height of the cone
Use the Pythagorean Theorem to find the length of the radius:
Plugging in our values, we get:
Example Question #1 : Cones
Find the volume of the following half cone.
The formula of the volume of a half cone is:
Where is the radius of the cone and is the height of the cone.
Use the Pythagorean Theorem to find the height of the cone:
Example Question #1 : How To Find The Volume Of A Cone
What is the volume of a right cone with a diameter of 6 cm and a height of 5 cm?
The general formula is given by , where = radius and = height.
The diameter is 6 cm, so the radius is 3 cm.
Example Question #1861 : High School Math
There is a large cone with a radius of 4 meters and height of 18 meters. You can fill the cone with water at a rate of 3 cubic meters every 25 seconds. How long will it take you to fill the cone?
First we will calculate the volume of the cone
Next we will determine the time it will take to fill that volume
We will then convert that into minutes
Example Question #1 : How To Find The Volume Of A Cone
You have an empty cylinder with a base diameter of 6 and a height of 10 and you have a cone full of water with a base radius of 3 and a height of 10. If you empty the cone of water into the cylinder, how much volume is left empty in the cylinder?
Cylinder Volume =
Cone Volume =
Cylinder Diameter = 6, therefore Cylinder Radius = 3
Cone Radius = 3
Empty Volume = Cylinder Volume – Cone Volume
Example Question #11 : Solid Geometry
What is the volume of a cone with base radius 4, and height 6?
The volume of a cone is , where is the height of the cone and is the base radius.
The volume of this cone is thus:
=
Example Question #1 : Cones
What is the surface area of a cone with a radius of 4 and a height of 3?
Here we simply need to remember the formula for the surface area of a cone and plug in our values for the radius and height.
Example Question #1 : How To Find The Surface Area Of A Cone
The lateral area is twice as big as the base area of a cone. If the height of the cone is 9, what is the entire surface area (base area plus lateral area)?
90π
27π
9π
81π
54π
81π
Lateral Area = LA = π(r)(l) where r = radius of the base and l = slant height
LA = 2B
π(r)(l) = 2π(r2)
rl = 2r2
l = 2r
From the diagram, we can see that r2 + h2 = l2. Since h = 9 and l = 2r, some substitution yields
r2 + 92 = (2r)2
r2 + 81 = 4r2
81 = 3r2
27 = r2
B = π(r2) = 27π
LA = 2B = 2(27π) = 54π
SA = B + LA = 81π
Example Question #11 : Cones
What is the surface area of a cone with a height of 8 and a base with a radius of 5?
To find the surface area of a cone we must plug in the appropriate numbers into the equation
where is the radius of the base, and is the lateral, or slant height of the cone.
First we must find the area of the circle.
To find the area of the circle we plug in our radius into the equation of a circle which is
This yields .
We then need to know the surface area of the cone shape.
To find this we must use our height and our radius to make a right triangle in order to find the lateral height using Pythagorean’s Theorem.
Pythagorean’s Theorem states
Take the radius and height and plug them into the equation as a and b to yield
First square the numbers
After squaring the numbers add them together
Once you have the sum, square root both sides
After calculating we find our length is
Then plug the length into the second portion of our surface area equation above to get
Then add the area of the circle with the conical area to find the surface area of the entire figure
The answer is .
Example Question #12 : Cones
What is the surface area of a cone with a radius of 6 in and a height of 8 in?
36π in2
60π in2
66π in2
112π in2
96π in2
96π in2
Find the slant height of the cone using the Pythagorean theorem: r2 + h2 = s2 resulting in 62 + 82 = s2 leading to s2 = 100 or s = 10 in
SA = πrs + πr2 = π(6)(10) + π(6)2 = 60π + 36π = 96π in2
60π in2 is the area of the cone without the base.
36π in2 is the area of the base only.