High School Math : High School Math

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : How To Do Word Problems Where Two Quantities Are Unknown

Michael has  red shirts and  blue shirts, such that the ratio is  red shirts for every  blue shirts. What is the minimum number of shirts he can have?

Possible Answers:

There is insufficient information to answer the question.

Correct answer:

Explanation:

It really doesn't matter what  and are. What matters is the ratio given to us,  red:  blue. Let's assume that he can only have whole shirts. That means that the minimum number of red shirts he can have is , and the minimum number of blue is , giving us a total of .

Example Question #4 : How To Do Word Problems Where Two Quantities Are Unknown

Two cars leave a city at the same time. One heads east at  and the other heads west at . How far apart are they after  hours?

Possible Answers:

Correct answer:

Explanation:

Remember, . If we look at the car going east, this would mean:

If we look at the car going west, then:

Therefore, we need to add the two distances to find the total distance between them.

Example Question #1 : Geometry

What is the perimeter of a regular hendecagon with a side length of 32?

Possible Answers:

Correct answer:

Explanation:

To find the perimeter of a regular hendecagon you must first know the number of sides in a hendecagon is 11.

When you know the number of sides of a regular polygon to find the perimeter you must multiply the side length by the number of sides.

In this case it is .

The answer for the perimeter is 

Example Question #131 : High School Math

Polygon

All segments of the polygon meet at right angles (90 degrees). The length of segment \overline{AB} is 10. The length of segment \overline{BC} is 8. The length of segment \overline{DE} is 3. The length of segment \overline{GH} is 2.

Find the perimeter of the polygon.

Possible Answers:

\dpi{100} \small 46

\dpi{100} \small 48

\dpi{100} \small 42

\dpi{100} \small 40

\dpi{100} \small 44

Correct answer:

\dpi{100} \small 46

Explanation:

The perimeter of the polygon is 46. Think of this polygon as a rectangle with two of its corners "flipped" inwards. This "flipping" changes the area of the rectangle, but not its perimeter; therefore, the top and bottom sides of the original rectangle would be 12 units long \dpi{100} \small (10+2=12). The left and right sides would be 11 units long \dpi{100} \small (8+3=11). Adding all four sides, we find that the perimeter of the recangle (and therefore, of this polygon) is 46.

Example Question #2 : How To Find The Perimeter Of A Polygon

What is the perimeter of a regular nonagon with a side length of ?

Possible Answers:

Correct answer:

Explanation:

To find the perimeter of a regular polygon, we take the length of each side, , and multiply it by the number of sides, .

In a nonagon the number of sides is , and in this example the side length is .

The perimeter is .

 

Example Question #2 : Geometry

Find the perimeter of the following octagon:

20

Possible Answers:

 

Correct answer:

Explanation:

The formula for the perimeter of an octagon is .

Plugging in our values, we get:

Example Question #2 : Geometry

What is the area of a regular heptagon with an apothem of 4 and a side length of 6?

Possible Answers:

Correct answer:

Explanation:

What is the area of a regular heptagon with an apothem of 4 and a side length of 6?

To find the area of any polygon with the side length and the apothem we must know the equation for the area of a polygon which is

First, we must calculate the perimeter using the side length.

To find the perimeter of a regular polygon we take the length of each side and multiply it by the number of sides.

In a heptagon the number of sides is 7 and in this example the side length is 6 so

The perimeter is .

Then we plug in the numbers for the apothem and perimeter into the equation yielding

We then multiply giving us the area of  .

Example Question #5 : Plane Geometry

What is the area of a regular decagon with an apothem of 15 and a side length of 25?

Possible Answers:

Correct answer:

Explanation:

To find the area of any polygon with the side length and the apothem we must know the equation for the area of a polygon which is

 

First, we must calculate the perimeter using the side length.

To find the perimeter of a regular polygon we take the length of each side and multiply it by the number of sides.

In a decagon the number of sides is 10 and in this example the side length is 25 so 

The perimeter is  .

Then we plug in the numbers for the apothem and perimeter into the equation yielding 

We then multiply giving us the area of  .

Example Question #3 : Geometry

What is the area of a regular heptagon with an apothem of  and a side length of ?

Possible Answers:

Correct answer:

Explanation:

To find the area of any polygon with the side length and the apothem we must know the equation for the area of a polygon which is

We must then calculate the perimeter using the side length.

To find the perimeter of a regular polygon we take the length of each side and multiply it by the number of sides

In a heptagon the number of sides  is  and in this example the side length is  so 

The perimeter is 56.

Then we plug in the numbers for the apothem and perimeter into the equation yielding 

We then multiply giving us the area of  .

Example Question #4 : Geometry

Find the area of the shaded region:

Screen_shot_2014-02-27_at_6.53.35_pm

Possible Answers:

Correct answer:

Explanation:

To find the area of the shaded region, you must subtract the area of the circle from the area of the square.

The formula for the shaded area is:

,

where  is the side of the square and  is the radius of the circle.

Plugging in our values, we get:

Learning Tools by Varsity Tutors