All High School Biology Resources
Example Questions
Example Question #1 : Photosynthesis
Which of the following statements about the Calvin cycle is false?
The Calvin cycle binds carbon atoms from carbon dioxide sources into organic compounds
The Calvin cycle is the second set of reactions in photosynthesis
The Calvin cycle releases oxygen as a byproduct
The Calvin cycle occurs within the stroma of the chloroplast
The Calvin cycle releases oxygen as a byproduct
The Calvin cycle is the second set of biochemical reactions in photosynthesis and follows the light reactions. The light reactions function to use photons and water to generate NADPH, oxygen, and water. The NADPH can then be used to power the Calvin cycle, which uses the energy stored in ATP and NADPH during light reactions to generate organic molecules for energy. The light reactions take place in the chloroplasts, but the Calvin cycle takes place in the stroma and is not dependent on light. The final result of the Calvin cycle is to use energy to bind reactant carbon dioxide to produce glyceraldehyde 3-phosphate (G3P), a three-carbon sugar. G3P is then used to build sucrose, starch, and cellulose for energy storage and metabolism.
Example Question #1 : Photosynthesis
What is the function of rubisco during the Calvin cycle?
It catalyzes the carboxylation of RuBP
It carries the prepared glucose to surrounding cells
It produces G3P molecules
It regenerates RuBP
It captures photons and uses them to generate ATP
It catalyzes the carboxylation of RuBP
Rubisco is an enzyme that helps add carbon dioxide to RuBP molecules. This in turn forms an unstable inermediate compound, which immediately breaks into two 3-PGA molecules.
Example Question #2 : Understanding The Calvin Cycle
Some plants can fix carbon through an alternative pathway called the C4 pathway. What is the key advantage of the C4 pathway?
It provides a feedback mechanism to split more water during the light reaction
Fixing carbon with less water loss compared to C3 plants
Production of more RuBP to fuel the Calvin cycle
The combination of both C3 and C4 pathways allows the plant to grow faster
Fixing carbon with less water loss compared to C3 plants
The key characteristic of the C4 pathway is that is produces oxaloacetate and four-carbon sugars from carbon dioxide, compared to the Calvin cycle of most plants, which generates glyceraldehyde 3-phosphate and three-carbon sugars.
The C4 pathway fixes carbon dioxide into four-carbon compounds, thus the name. Pores on the plant called stomata regulate how much carbon dioxide, oxygen, and water enter and leave the plant and are usually partially closed during the hottest part of the day to conserve water. This yields a low carbon dioxide level and high oxygen level, which inhibits carbon fixation by the Calvin cycle. Plants that use the C4 pathway have an enzyme that can efficiently fix carbon to four-carbon compounds when the carbon dioxide level is low. The four-carbon compounds are then transported to other cells, where carbon dioxide is released and can enter the Calvin cycle.
Plants that use the C4 pathway are better adapted to hot and dry conditions, as they can fix carbon with less loss of water. Examples of C4 plants are corn and crabgrass.
Example Question #8 : Photosynthesis
In the chemical reaction of photosynthesis, photoautotrophs combine carbon dioxide and water to produce sugar and which of the following?
Oxygen
ATP
Methane
Ethyl alcohol
Oxygen
Sugar (glucose) and oxygen are the two products of photosynthesis. Methane is a gas consisting of carbon and hydrogen. ATP is the energy produced in the organelle mitochondria. Ethyl alcohol is the active substance in beer and wine that causes intoxication if too much is consumed.
Example Question #2 : Understanding The Calvin Cycle
Which of the following is an example of an anabolic pathway?
Fatty acid decarboxylation
Photosynthesis
All of these
Glycolysis
Citric acid cycle
Photosynthesis
An anabolic pathway is a pathway in which smaller molecules are combined to form larger ones. This type of pathway usually requires energy to complete the combinations required. Photosynthesis is an example of this, because it combines carbon dioxide molecules to form glucose. The rest of the listed processes are catabolic pathways.
Example Question #3 : Photosynthesis
Some plants can fix carbon through an alternative pathway called the C4 pathway. What is the key advantage of the C4 pathway?
It provides a feedback mechanism to split more water during the light reaction
The combination of both C3 and C4 pathways allows the plant to grow faster
Production of more RuBP to fuel the Calvin cycle
Fixing carbon with less water loss compared to C3 plants
Fixing carbon with less water loss compared to C3 plants
The key characteristic of the C4 pathway is that is produces oxaloacetate and four-carbon sugars from carbon dioxide, compared to the Calvin cycle of most plants, which generates glyceraldehyde 3-phosphate and three-carbon sugars.
The C4 pathway fixes carbon dioxide into four-carbon compounds, thus the name. Pores on the plant called stomata regulate how much carbon dioxide, oxygen, and water enter and leave the plant and are usually partially closed during the hottest part of the day to conserve water. This yields a low carbon dioxide level and high oxygen level, which inhibits carbon fixation by the Calvin cycle. Plants that use the C4 pathway have an enzyme that can efficiently fix carbon to four-carbon compounds when the carbon dioxide level is low. The four-carbon compounds are then transported to other cells, where carbon dioxide is released and can enter the Calvin cycle.
Plants that use the C4 pathway are better adapted to hot and dry conditions, as they can fix carbon with less loss of water. Examples of C4 plants are corn and crabgrass.
Example Question #1 : Understanding Endocytosis And Exocytosis
What type of transport involves the cell engulfing matter from the outside environment?
Phagocytosis
Pinocytosis
Diffusion
Exocytosis
Phagocytosis
Phagocytosis is the event of a cell engulfing particular matter from outside the cell and bringing it into the cell. Macrophages are the most prominent phagocytic cells, and help to eliminate pathogens and bacteria through phagocytosis.
Pinocytosis allows extracellular fluid to enter the cell, using invaginations on the cell membrane to create vesicles. Exocytosis involves vesicles leaving the cell, not entering. Diffusion is the passive transport of substances across the membrane and does not involve vesicles.
Example Question #2 : Understanding Endocytosis And Exocytosis
Which of the following normally gets exocytosed from a cell?
RNA
DNA
Cytoplasmic constituents
Hormones
Integral membrane proteins
Hormones
Exocytosis is a process by which the cell packages content and secretes it from the cell in a vesicle. Hormones, which act on cells far away from where they are produced, will travel out of the cell to reach their target tissues and organs. Vesicles of hormones will fuse with the membrane of the cell and release the hormone into the blood for transport.
DNA, RNA, and cytoplasmic constituents do not leave the cell and would not be exocytosed. Integral membrane proteins are placed in the membrane via vesicle fusion, but are not exocytosed in the process.
Example Question #3 : Understanding Endocytosis And Exocytosis
Particle A is observed to be brought into the cell through endocytosis. This means that the destination of particle A is most likely ___________.
the cytosol because it is being transported via a vesicle
one of the membrane-bound organelles because vesicles aren’t involved
one of the membrane-bound organelles because it is being transported via a vesicle
the cytosol because vesicles aren’t involved
one of the membrane-bound organelles because it is being transported via a vesicle
There are two topologically different structures inside the cell: the lumen and the cytosol. Lumen consists of the inside of the organelles and the inside of vesicles. Cytosol consists of the fluid that surrounds the organelles.
The questions states that particle A undergoes endocytosis. In endocytosis particles from outside of the cell are brought to the inside of the cell by vesicles that bud off from the cell membrane. These vesicles deliver the particles to the target organelle. The vesicles fuse with the organelle’s membrane and the particles are released into the lumen of the organelle. These particles never make contact with the cytosol side of the cell; therefore, the best answer is that particle A is destined for one of the membrane-bound organelles because it is being transported via a vesicle. This mechanism is also relevant for exocytosis. Secretory vesicles carry contents from inside the cell to the outside, without letting the contents touch the cytosol.
Example Question #3 : Understanding Endocytosis And Exocytosis
Given below are four events that occur during the synthesis and transport of proteins.
1. Protein is transported to Golgi apparatus for packaging
2. Translation of mRNA occurs in the cytosol
3. Protein is transported to the cell membrane
4. Protein is transported to rough endoplasmic reticulum for processing
Which of the following is the correct order of these events?
2, 4, 1, 3
3, 2, 1, 4
1, 3, 2, 4
2, 1, 4, 3
2, 4, 1, 3
To answer this question you need to know the sequence of events that a protein goes through during and after synthesis.
The first step is the synthesis of protein. This occurs when mRNA is translated to protein by ribosomes. The first event is statement 2.
After its synthesis, the protein is transported to the rough endoplasmic reticulum where it is processed. This processing involves removal of unwanted amino acid sequences, such as signal sequences. The second event is statement 4.
From the rough endoplasmic reticulum the protein is transported to Golgi apparatus where it is further processed and packaged. This next event is statement 1.
The last step is the delivery of protein to the cell membrane (statement 3). Once the protein reaches the cell membrane it can either be exported to the outside (exocytosis) or become part of the membrane (integral and peripheral membrane proteins). Remember that the protein is transported by vesicles and that it never makes contact with the cytosol.
Certified Tutor
Certified Tutor