GRE Subject Test: Math : Coordinate Geometry

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Slope & Intercept

What is the slope (\displaystyle m) and the y-intercept \displaystyle (b) of the equation

\displaystyle y = \frac{1}{6}x -\frac{1}{2}

Possible Answers:

\displaystyle m=\frac{1}{6}  and \displaystyle b = \frac{1}{2}

\displaystyle m=-\frac{1}{6}  and \displaystyle b = \frac{1}{2}

\displaystyle m=-\frac{1}{6}  and \displaystyle b = -\frac{1}{2}

\displaystyle m=\frac{1}{6}  and \displaystyle b = -\frac{1}{2}

Correct answer:

\displaystyle m=\frac{1}{6}  and \displaystyle b = -\frac{1}{2}

Explanation:

The formula to find slope and y-intercept is:

\displaystyle y=mx +b

\displaystyle m=\frac{1}{6} and \displaystyle b =-\frac{1}{2}

 

Example Question #41 : Functions And Graphs

What is the slope \displaystyle (m)and the y-intercept \displaystyle (b) of the equation

\displaystyle y = 3x+2x-1

Possible Answers:

\displaystyle m = 3 and \displaystyle b =-1

\displaystyle m = 3 and \displaystyle b = -1

\displaystyle m=5 and \displaystyle b =-1

\displaystyle m = 2 and \displaystyle b =2

Correct answer:

\displaystyle m=5 and \displaystyle b =-1

Explanation:

The formula to find slope and y-intercept is:

\displaystyle y=mx +b

\displaystyle y = 3x+2x-1

Combine like terms.

\displaystyle y = 5x -1

\displaystyle m=5 and \displaystyle b = -1

Example Question #43 : Gre Subject Test: Math

The points given lie on a line. Find the slope.

\displaystyle x     \displaystyle -2,0,2,4

\displaystyle y       \displaystyle 8, 5, 2, -1

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle -\frac{2}{3}

\displaystyle \frac{-3}{2}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle \frac{-3}{2}

Explanation:

slope   = \displaystyle \frac{rise}{run}

rise  =   changes in y 

run  =   changes in x

\displaystyle x     \displaystyle -2,0,2,4

\displaystyle y       \displaystyle 8, 5, 2, -1

The change in the \displaystyle y coordinates is that the numbers are decreasing by 3 or -3.

The change in the \displaystyle x coordinates is that the numbers are increasing by 2 or +2;

slope = \displaystyle \frac{-3}{2}

Example Question #3 : Slope & Intercept

The points given lie on a line.  Find the slope.

 

\displaystyle x     \displaystyle -8,-4,0,4

\displaystyle y       \displaystyle 2, 5, 8, 11

Possible Answers:

\displaystyle -\frac{3}{4}

\displaystyle \frac{3}{4}

\displaystyle -\frac{4}{3}

\displaystyle \frac{4}{3}

Correct answer:

\displaystyle \frac{3}{4}

Explanation:

 slope  = \displaystyle \frac{rise}{run}

rise  =   changes in y 

run  =   changes in x

\displaystyle x     \displaystyle -8,-4,0,4

\displaystyle y       \displaystyle 2, 5, 8, 11

 

The change in the \displaystyle y coordinates is that the numbers are increasing by 3 or +3.

The change in the \displaystyle x coordinates is that the numbers are increasing by 4 or +4.

slope = \displaystyle \frac{3}{4}

Example Question #9 : Slope & Intercept

The points given lie on a line. Find the slope.

\displaystyle x        \displaystyle -6,-4,-2,0

\displaystyle y       \displaystyle -3, -3, -3, -3

Possible Answers:

Slope is undefined.

\displaystyle m = 0

\displaystyle m=2

\displaystyle m=-\frac{3}{2}

Correct answer:

\displaystyle m = 0

Explanation:

slope =  \displaystyle \frac{rise}{run}

rise  =   changes in y 

run  =   changes in x

 

\displaystyle x        \displaystyle -6,-4,-2,0

\displaystyle y       \displaystyle -3, -3, -3, -3

There is zero change in the \displaystyle y coordinates.

The change in the \displaystyle x coordinates is that the numbers are increasing by 2 or +2.

slope = \displaystyle \frac{0}{2}

\displaystyle m = 0

If the \displaystyle y  coordinates are the same, then it will be a horizontal line.  The slope of a horizontal line is 0.

Example Question #51 : Functions And Graphs

Find the slope of a line that passes through \displaystyle A (3,-1)  and \displaystyle B (6,5).

Possible Answers:

\displaystyle m=-2

\displaystyle m=2

\displaystyle m=\frac{1}{2}

\displaystyle m=-\frac{1}{2}

Correct answer:

\displaystyle m=2

Explanation:

The formula for slope is:

\displaystyle m = \frac{y_{2} - y_{1}}{x_{2} -x_{1}}

\displaystyle m = \frac{5-(-1)}{6-3}

\displaystyle m = \frac{5+1}{6-3}

\displaystyle m = \frac{6}{3}

\displaystyle m=2

Example Question #31 : Coordinate Geometry

Find the slope of a line that passes through the points  \displaystyle S(1,2) and \displaystyle T (6,-8).

Possible Answers:

\displaystyle m=-2

\displaystyle m=\frac{1}{2}

\displaystyle m=-\frac{1}{2}

\displaystyle m=2

Correct answer:

\displaystyle m=-2

Explanation:

The formula for slope is:

\displaystyle m = \frac{y_{2} - y_{1}}{x_{2} -x_{1}}

\displaystyle m = \frac{-8-2}{6-1}

\displaystyle m = \frac{-10}{5}

\displaystyle m=-2

Example Question #11 : Slope & Intercept

Find the slope of a line that passes through the points \displaystyle G(-3,-1)  and \displaystyle H (-2,-2).

Possible Answers:

\displaystyle m=0

\displaystyle m=-1

Slope is undefined.

\displaystyle m=1

Correct answer:

\displaystyle m=-1

Explanation:

The formula for slope is:

\displaystyle m = \frac{y_{2} - y_{1}}{x_{2} -x_{1}}

\displaystyle m= \frac{-2-(-1)}{-2- (-3)}

\displaystyle m = \frac{-2+1}{-2+3}

\displaystyle m=\frac{-1}{1}

\displaystyle m=1

Example Question #51 : Functions And Graphs

What is the slope of the line:\displaystyle 3x-6y=-14

Possible Answers:

\displaystyle m=\frac {1}{2}

\displaystyle m=\frac {7}{3}

\displaystyle m=1

\displaystyle m=-\frac {1}{2}

Correct answer:

\displaystyle m=\frac {1}{2}

Explanation:

Step 1: The current equation is in standard form, where x and y are both on one side of the equal sign..

Step 2: Change the equation to slope-intercept form.. Move the y to the other side

\displaystyle 3x=6y-14

Step 3: Move the constant to the other side:

\displaystyle 3x+14=6y

Step 4: Divide by the coefficient in front of \displaystyle y:

\displaystyle \frac {3x+14}{6}=\frac {6y}{6}

Step 5: Split the left side into two fractions and simplify:

\displaystyle \frac {3x}{6}+\frac {14}{6}=y

\displaystyle \rightarrow \frac {1}{2}x+\frac {7}{3}=y

Step 6. Locate the slope. The slope is the coefficient of the x term.

The slope is \displaystyle \frac {1}{2}, or \displaystyle m=\frac {1}{2}

Example Question #52 : Functions And Graphs

Find the y-intercept of the equation of a line: \displaystyle x+4y=12

Possible Answers:

\displaystyle b=-3

\displaystyle b=3

\displaystyle b=\frac {1}{3}

\displaystyle b=-\frac {1}{3}

Correct answer:

\displaystyle b=3

Explanation:

Step 1: Subtract \displaystyle x from both sides:



Step 2: Divide by the coefficient of the y term..In this case, divide by \displaystyle 4.

\displaystyle \frac {4y}{y}=\frac {-x+12}{4}

Simplify and separate fraction on right side:



Step 3: Locate the y-intercept (also known as b):

If we compare our equation to the general slope-intercept form: \displaystyle y=mx+b, we see that \displaystyle 3=b..

The value of \displaystyle b is \displaystyle 3.

Learning Tools by Varsity Tutors