GED Math : GED Math

Study concepts, example questions & explanations for GED Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #35 : Solving For The Variable

Solve for the variable:  \displaystyle x-7 = 2x-3

Possible Answers:

\displaystyle -4

\displaystyle 6

\displaystyle -\frac{10}{3}

\displaystyle -10

\displaystyle -\frac{4}{3}

Correct answer:

\displaystyle -4

Explanation:

Subtract \displaystyle x from both sides.

\displaystyle x-7 -x= 2x-3-x

\displaystyle -7 = x-3

Add 3 on both sides.

\displaystyle -7 +3= x-3+3

\displaystyle x=-4

The answer is:  \displaystyle -4

Example Question #32 : Solving For The Variable

Give the solution set:

\displaystyle 9 (x + 18) < 261

Possible Answers:

\displaystyle \left \{ x| x< 27\right \}

\displaystyle \left \{ x| x< 11 \right \}

\displaystyle \left \{ x| x< 31\right \}

\displaystyle \left \{ x| x< 47\right \}

Correct answer:

\displaystyle \left \{ x| x< 11 \right \}

Explanation:

First, distribute the 9 on the left by multiplying it by each expression in the parentheses:

\displaystyle 9 (x + 18) < 261

\displaystyle 9 \cdot x + 9 \cdot 18 < 261

\displaystyle 9 x +162 < 261

Isolate \displaystyle x on the right by first, subtracting 162 from both sides:

\displaystyle 9 x +162 - 162 < 261 - 162

\displaystyle 9 x < 99

Divide both sides by 9:

\displaystyle \frac{9x }{9}< \frac{99}{9}

\displaystyle x< 11

The correct solution set is \displaystyle \left \{ x| x< 11 \right \}.

Example Question #81 : Algebra

Which of the following makes this equation true:

\displaystyle 12x+4=112

Possible Answers:

\displaystyle x=7

\displaystyle x=12

\displaystyle x=4

\displaystyle x=8

\displaystyle x=9

Correct answer:

\displaystyle x=9

Explanation:

To answer the question, we will solve for x. So, we get

\displaystyle 12x+4=112

\displaystyle 12x+4-4=112-4

\displaystyle 12x=108

\displaystyle \frac{12x}{12} = \frac{108}{12}

\displaystyle x=9

Example Question #31 : Solving For The Variable

Solve for \displaystyle x:   \displaystyle 3x+5 = -19

Possible Answers:

\displaystyle -17

\displaystyle 21

\displaystyle -\frac{14}{3}

\displaystyle -6

\displaystyle -8

Correct answer:

\displaystyle -8

Explanation:

Subtract five from both sides.

\displaystyle 3x+5 -5= -19-5

\displaystyle 3x=-24

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{-24}{3}

The answer is:  \displaystyle -8

Example Question #81 : Algebra

Solve the equation:  \displaystyle -2x-3 = 4x-7

Possible Answers:

\displaystyle -\frac{5}{3}

\displaystyle \frac{3}{2}

\displaystyle \frac{5}{3}

\displaystyle \frac{2}{3}

\displaystyle \frac{5}{4}

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

Add \displaystyle 2x on both sides.

\displaystyle -2x-3 +2x= 4x-7+2x

\displaystyle -3 = 6x-7

Add 7 on both sides.

\displaystyle -3 +7= 6x-7+7

\displaystyle 4= 6x

Divide by 6 on both sides.

\displaystyle \frac{4}{6}= \frac{6x}{6}

Reduce both fractions.

The answer is:  \displaystyle \frac{2}{3}

Example Question #41 : Solving For The Variable

Solve for x.

\displaystyle \frac{x}{12} = 11

Possible Answers:

\displaystyle x=132

\displaystyle x=144

\displaystyle x=13

\displaystyle x=23

\displaystyle x=121

Correct answer:

\displaystyle x=132

Explanation:

To solve for x, we want x to stand alone. So, we get

\displaystyle \frac{x}{12} = 11

 

\displaystyle \frac{x}{12} \cdot 12 = 11 \cdot 12

 

\displaystyle x = 132

Example Question #42 : Solving For The Variable

Solve for \displaystyle x:  \displaystyle 2x-5 = 3x-2

Possible Answers:

\displaystyle 3

\displaystyle -\frac{3}{5}

\displaystyle -3

\displaystyle -\frac{7}{5}

\displaystyle \frac{7}{5}

Correct answer:

\displaystyle -3

Explanation:

Subtract \displaystyle 2x from both sides.

\displaystyle 2x-5 -2x= 3x-2-2x

\displaystyle -5 = x-2

Add 2 on both sides.

\displaystyle -5+2 = x-2+2

\displaystyle -3 =x

The answer is:  \displaystyle -3

Example Question #43 : Solving For The Variable

Which of the following makes this equation true:

\displaystyle 7y+19=75

Possible Answers:

\displaystyle y=19

\displaystyle y=9

\displaystyle y=7

\displaystyle y=12

\displaystyle y=8

Correct answer:

\displaystyle y=8

Explanation:

To answer the question, we will solve for y. We get

\displaystyle 7y+19=75

 

\displaystyle 7y+19-19=75-19

 

\displaystyle 7y+0=56

 

\displaystyle 7y=56

 

\displaystyle \frac{7y}{7} = \frac{56}{7}

 

\displaystyle y=8

Example Question #93 : Algebra

Solve the following equation:  \displaystyle 8x-15 = -3

Possible Answers:

\displaystyle \frac{3}{2}

\displaystyle -\frac{3}{2}

\displaystyle -\frac{9}{4}

\displaystyle \frac{9}{4}

Correct answer:

\displaystyle \frac{3}{2}

Explanation:

Add 15 on both sides.

\displaystyle 8x-15+15 = -3+15

Simplify both sides of the equation.

\displaystyle 8x = 12

Divide by 8 on both sides.

\displaystyle \frac{8x}{8} = \frac{12}{8}

Reduce the fractions.

The answer is:  \displaystyle \frac{3}{2}

Example Question #94 : Algebra

Solve for \displaystyle h:  \displaystyle 2h+6=4h+3

Possible Answers:

\displaystyle \frac{2}{3}

\displaystyle \frac{9}{2}

\displaystyle \frac{4}{3}

\displaystyle \frac{1}{3}

\displaystyle \frac{3}{2}

Correct answer:

\displaystyle \frac{3}{2}

Explanation:

Subtract \displaystyle 2h from both sides.

\displaystyle 2h+6-2h=4h+3-2h

\displaystyle 6= 2h+3

Subtract 3 from both sides.

\displaystyle 6-3= 2h+3-3

\displaystyle 3=2h

Divide by 2 on both sides.

\displaystyle \frac{3}{2}=\frac{2h}{2}

The answer is:  \displaystyle \frac{3}{2}

Learning Tools by Varsity Tutors