All Common Core: 8th Grade Math Resources
Example Questions
Example Question #10 : Compare Properties Of Two Functions: Ccss.Math.Content.8.F.A.2
The table and the equation provided represent two different functions. Which of these two functions—either table or equation form—has the greater rate of change, and what is the rate of change?
The rate of change is also known as the slope. As we have learned we can use the following equation to solve for the slope of the table:
An input/output table displays sets of ordered pairs. The input column represents the x-values and the output column represents the y-values. We can select two sets of ordered pairs from the table to solve for the slope:
The slope for our table is
In order to determine the slope of the equation, we need to make sure the equation is in slope-intercept form:
In this equation, the variables and are defined as the following:
The given formula for this problem was provided in slope-intercept form; thus, the slope for the equation is
The function with the greatest rate of change will possess the greatest slope. In this case, the greater slope is , which was displayed in the function written in equation form; thus, the following answer is correct:
Example Question #271 : Grade 8
The table and the equation provided represent two different functions. Which of these two functions—either table or equation form—has the greater rate of change, and what is the rate of change?
The rate of change is also known as the slope. As we have learned we can use the following equation to solve for the slope of the table:
An input/output table displays sets of ordered pairs. The input column represents the x-values and the output column represents the y-values. We can select two sets of ordered pairs from the table to solve for the slope:
The slope for our table is
In order to determine the slope of the equation, we need to make sure the equation is in slope-intercept form:
In this equation, the variables and are defined as the following:
The given formula for this problem was provided in slope-intercept form; thus, the slope for the equation is
The function with the greatest rate of change will possess the greatest slope. In this case, the greater slope is , which was displayed in the function written in equation form; thus, the following answer is correct:
Example Question #272 : Grade 8
The table and the equation provided represent two different functions. Which of these two functions—either table or equation form—has the greater rate of change, and what is the rate of change?
The rate of change is also known as the slope. As we have learned we can use the following equation to solve for the slope of the table:
An input/output table displays sets of ordered pairs. The input column represents the x-values and the output column represents the y-values. We can select two sets of ordered pairs from the table to solve for the slope:
The slope for our table is
In order to determine the slope of the equation, we need to make sure the equation is in slope-intercept form:
In this equation, the variables and are defined as the following:
The given formula for this problem was provided in slope-intercept form; thus, the slope for the equation is
The function with the greatest rate of change will possess the greatest slope. In this case, the greater slope is , which was displayed in the function written in table form; thus, the following answer is correct:
Example Question #1 : Graphing Polynomial Functions
Which of the graphs best represents the following function?
None of these
The highest exponent of the variable term is two (). This tells that this function is quadratic, meaning that it is a parabola.
The graph below will be the answer, as it shows a parabolic curve.
Example Question #1 : Understand Linear And Nonlinear Functions: Ccss.Math.Content.8.F.A.3
What is the equation of a parabola with vertex and -intercept ?
From the vertex, we know that the equation of the parabola will take the form for some .
To calculate that , we plug in the values from the other point we are given, , and solve for :
Now the equation is . This is not an answer choice, so we need to rewrite it in some way.
Expand the squared term:
Distribute the fraction through the parentheses:
Combine like terms:
Example Question #1 : Functions As Graphs
Which graph depicts a function?
Example Question #1 : How To Graph A Function
Which equation best represents the following graph?
None of these
We have the following answer choices.
The first equation is a cubic function, which produces a function similar to the graph. The second equation is quadratic and thus, a parabola. The graph does not look like a prabola, so the 2nd equation will be incorrect. The third equation describes a line, but the graph is not linear; the third equation is incorrect. The fourth equation is incorrect because it is an exponential, and the graph is not an exponential. So that leaves the first equation as the best possible choice.
Example Question #1 : How To Graph A Quadratic Function
None of the above
Starting with
moves the parabola by units to the right.
Similarly moves the parabola by units to the left.
Hence the correct answer is option .
Example Question #2 : Understand Linear And Nonlinear Functions: Ccss.Math.Content.8.F.A.3
Select the equation that best represents a linear function.
In order to determine if an equation defines a linear function, we want to make sure that the equation of the line is in slope-intercept form:
If we are unable to put an equation in this form, then the equation is not linear.
Let's take a look at our answer choices:
Notice that in this equation our value is to the third power, which does not match our slope-intercept form.
Though this equation is not written in form, we can tell straight away that this does not define a linear function because the value is to the second power.
Again, though this equation is not written in form, we can tell straight away that this does not define a linear function because the value is to the second power.
This equation is in slope-intercept form; thus, is the correct answer.
Example Question #3 : Understand Linear And Nonlinear Functions: Ccss.Math.Content.8.F.A.3
Select the equation that best represents a linear function.
In order to determine if an equation defines a linear function, we want to make sure that the equation of the line is in slope-intercept form:
If we are unable to put an equation in this form, then the equation is not linear.
Let's take a look at our answer choices:
Notice that in this equation our value is to the third power, which does not match our slope-intercept form.
Though this equation is not written in form, we can tell straight away that this does not define a linear function because the value is to the second power.
Again, though this equation is not written in form, we can tell straight away that this does not define a linear function because the value is to the second power.
For this equation, we can solve for to make sure this equation can be written is slope-intercept form. From first glance it looks to be correct because none of our variables are written to a power. In order to tell for certain, we need to isolate the y variable on the left side of the equation.
First, we can subtract from both sides:
Next, we can divide each side by
This equation is in slope-intercept form; thus, is the correct answer.