Common Core: 4th Grade Math : Understand decimal notation for fractions, and compare decimal fractions

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #297 : Number & Operations: €”Fractions

\(\displaystyle \frac{1}{10}+\frac{1}{100}=\)

 

Possible Answers:

\(\displaystyle \frac{21}{100}\)

\(\displaystyle \frac{2}{100}\)

\(\displaystyle \frac{2}{10}\)

\(\displaystyle \frac{11}{100}\)

\(\displaystyle \frac{20}{100}\)

Correct answer:

\(\displaystyle \frac{11}{100}\)

Explanation:

When we add fractions, we must have common denominators. Whenever we have a number over \(\displaystyle 10\) or \(\displaystyle 100\) we can add \(\displaystyle 0\)(s) to the numerator and denominator to make common denominators.

\(\displaystyle \frac{1}{10}=\frac{10}{100}\)

\(\displaystyle \frac{10}{100}+\frac{1}{100}=\frac{11}{100}\)

Example Question #22 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{9}{10}+\frac{6}{100}=\)

 

Possible Answers:

\(\displaystyle \frac{96}{100}\)

\(\displaystyle \frac{60}{100}\)

\(\displaystyle \frac{15}{10}\)

\(\displaystyle \frac{15}{100}\)

\(\displaystyle \frac{90}{100}\)

Correct answer:

\(\displaystyle \frac{96}{100}\)

Explanation:

When we add fractions, we must have common denominators. Whenever we have a number over \(\displaystyle 10\) or \(\displaystyle 100\) we can add \(\displaystyle 0\)(s) to the numerator and denominator to make common denominators.

\(\displaystyle \frac{9}{10}=\frac{90}{100}\)

\(\displaystyle \frac{90}{100}+\frac{6}{100}=\frac{96}{100}\)

Example Question #23 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{2}{10}+\frac{4}{100}=\)

 

Possible Answers:

\(\displaystyle \frac{6}{10}\)

\(\displaystyle \frac{40}{100}\)

\(\displaystyle \frac{6}{100}\)

\(\displaystyle \frac{20}{100}\)

\(\displaystyle \frac{24}{100}\)

Correct answer:

\(\displaystyle \frac{24}{100}\)

Explanation:

When we add fractions, we must have common denominators. Whenever we have a number over \(\displaystyle 10\) or \(\displaystyle 100\) we can add \(\displaystyle 0\)(s) to the numerator and denominator to make common denominators.

\(\displaystyle \frac{2}{10}=\frac{20}{100}\)

\(\displaystyle \frac{20}{100}+\frac{4}{100}=\frac{24}{100}\)

Example Question #24 : Express A Fraction With Denominator 10 As An Equivalent Fraction With Denominator 100: Ccss.Math.Content.4.Nf.C.5

\(\displaystyle \frac{3}{10}+\frac{6}{100}=\)

 

Possible Answers:

\(\displaystyle \frac{60}{100}\)

\(\displaystyle \frac{30}{100}\)

\(\displaystyle \frac{9}{100}\)

\(\displaystyle \frac{6}{10}\)

\(\displaystyle \frac{36}{100}\)

Correct answer:

\(\displaystyle \frac{36}{100}\)

Explanation:

When we add fractions, we must have common denominators. Whenever we have a number over \(\displaystyle 10\) or \(\displaystyle 100\) we can add \(\displaystyle 0\)(s) to the numerator and denominator to make common denominators.

\(\displaystyle \frac{3}{10}=\frac{30}{100}\)

\(\displaystyle \frac{30}{100}+\frac{6}{100}=\frac{36}{100}\)

Example Question #1 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{57}{100}\)?

 

Possible Answers:

\(\displaystyle 57.00\)

\(\displaystyle .057\)

\(\displaystyle .57\)

\(\displaystyle 5.7\)

\(\displaystyle 50.7\)

Correct answer:

\(\displaystyle .57\)

Explanation:

\(\displaystyle \frac{57}{100}\) is fifty-seven hundredths. 

\(\displaystyle .57\) is fifty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{69}{100}\)?

 

Possible Answers:

\(\displaystyle .69\)

\(\displaystyle 69.9\)

\(\displaystyle 6.9\)

\(\displaystyle 69.09\)

\(\displaystyle 60.9\)

Correct answer:

\(\displaystyle .69\)

Explanation:

\(\displaystyle \frac{69}{100}\) is sixty-nine hundredths. 

\(\displaystyle .69\) is sixty-nine hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #21 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \(\displaystyle \frac{18}{100}\)?

 

Possible Answers:

\(\displaystyle 1.8\)

\(\displaystyle 10.8\)

\(\displaystyle 10.08\)

\(\displaystyle .18\)

\(\displaystyle .018\)

Correct answer:

\(\displaystyle .18\)

Explanation:

\(\displaystyle \frac{18}{100}\) is eighteen hundredths. 

\(\displaystyle .18\) is eighteen hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #2 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{7}{100}\)?

 

Possible Answers:

\(\displaystyle 77.7\)

\(\displaystyle 7.07\)

\(\displaystyle 7.7\)

\(\displaystyle .7\)

\(\displaystyle .07\)

Correct answer:

\(\displaystyle .07\)

Explanation:

\(\displaystyle \frac{7}{100}\) is seven hundredths. 

\(\displaystyle .07\) is seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #22 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

Select the decimal that is equivalent to \(\displaystyle \frac{81}{100}\)

 

Possible Answers:

\(\displaystyle .81\)

\(\displaystyle 81.00\)

\(\displaystyle 8.1\)

\(\displaystyle 80.1\)

\(\displaystyle 81.01\)

Correct answer:

\(\displaystyle .81\)

Explanation:

\(\displaystyle \frac{81}{100}\) is eighty-one hundredths. 

\(\displaystyle .81\) is eighty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #761 : Common Core Math: Grade 4

Select the decimal that is equivalent to \(\displaystyle \frac{12}{100}\)

 

Possible Answers:

\(\displaystyle .12\)

\(\displaystyle 1.2\)

\(\displaystyle .012\)

\(\displaystyle 10.2\)

\(\displaystyle 12.12\)

Correct answer:

\(\displaystyle .12\)

Explanation:

\(\displaystyle \frac{12}{100}\) is twelve hundredths. 

\(\displaystyle .12\) is twelve hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Learning Tools by Varsity Tutors