Common Core: 4th Grade Math : Understand decimal notation for fractions, and compare decimal fractions

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{22}{100}\)?

Possible Answers:

\(\displaystyle .2\)

\(\displaystyle 2.02\)

\(\displaystyle .02\)

\(\displaystyle .22\)

\(\displaystyle 2.2\)

Correct answer:

\(\displaystyle .22\)

Explanation:

\(\displaystyle \frac{22}{100}\) is twenty-two hundredths. 

\(\displaystyle .22\) is twenty-two hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #4 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{19}{100}\)?

 

Possible Answers:

\(\displaystyle .9\)

\(\displaystyle .019\)

\(\displaystyle .19\)

\(\displaystyle 19\)

\(\displaystyle 1.9\)

Correct answer:

\(\displaystyle .19\)

Explanation:

\(\displaystyle \frac{19}{100}\) is nineteen hundredths. 

\(\displaystyle .19\) is nineteen hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #5 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{37}{100}\)?

 

Possible Answers:

\(\displaystyle .037\)

\(\displaystyle .37\)

\(\displaystyle .3\)

\(\displaystyle 3.7\)

\(\displaystyle .07\)

Correct answer:

\(\displaystyle .37\)

Explanation:

\(\displaystyle \frac{37}{100}\) is thirty-seven hundredths. 

\(\displaystyle .37\) is thirty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #6 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{47}{100}\)?

 

Possible Answers:

\(\displaystyle .47\)

\(\displaystyle .4\)

\(\displaystyle 47.\)

\(\displaystyle 4.7\)

\(\displaystyle .07\)

Correct answer:

\(\displaystyle .47\)

Explanation:

\(\displaystyle \frac{47}{100}\) is forty-seven hundredths. 

\(\displaystyle .47\) is forty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #82 : How To Find The Decimal Equivalent Of A Fraction

What decimal is equivalent to \(\displaystyle \frac{51}{100}\)?

 

Possible Answers:

\(\displaystyle 5.1\)

\(\displaystyle .051\)

\(\displaystyle .501\)

\(\displaystyle .51\)

\(\displaystyle .5\)

Correct answer:

\(\displaystyle .51\)

Explanation:

\(\displaystyle \frac{51}{100}\) is fifty-one hundredths. 

\(\displaystyle .51\) is fifty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #83 : How To Find The Decimal Equivalent Of A Fraction

What decimal is equivalent to \(\displaystyle \frac{69}{100}\)?

 

Possible Answers:

\(\displaystyle .69\)

\(\displaystyle .069\)

\(\displaystyle 6.9\)

\(\displaystyle .609\)

\(\displaystyle 69.\)

Correct answer:

\(\displaystyle .69\)

Explanation:

\(\displaystyle \frac{69}{100}\) is sixty-nine hundredths. 

\(\displaystyle .69\) is sixty-nine hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #31 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \(\displaystyle \frac{76}{100}\)?

 

Possible Answers:

\(\displaystyle 76.0\)

\(\displaystyle .076\)

\(\displaystyle .76\)

\(\displaystyle 7.6\)

\(\displaystyle 7.06\)

Correct answer:

\(\displaystyle .76\)

Explanation:

\(\displaystyle \frac{76}{100}\) is seventy-six hundredths. 

\(\displaystyle .76\) is seventy-six hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #32 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \(\displaystyle \frac{84}{100}\)?

 

Possible Answers:

\(\displaystyle .084\)

\(\displaystyle 84.0\)

\(\displaystyle 8.4\)

\(\displaystyle .84\)

\(\displaystyle .8\)

Correct answer:

\(\displaystyle .84\)

Explanation:

\(\displaystyle \frac{84}{100}\) is eighty-four hundredths. 

\(\displaystyle .84\) is eighty-four hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #33 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \(\displaystyle \frac{91}{100}\)?

 

Possible Answers:

\(\displaystyle .9\)

\(\displaystyle .091\)

\(\displaystyle 9.1\)

\(\displaystyle .91\)

\(\displaystyle 91\)

Correct answer:

\(\displaystyle .91\)

Explanation:

\(\displaystyle \frac{91}{100}\) is ninety-one hundredths. 

\(\displaystyle .91\) is ninety-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #34 : Understand Decimal Notation For Fractions, And Compare Decimal Fractions

What decimal is equivalent to \(\displaystyle \frac{11}{100}\)?

 

Possible Answers:

\(\displaystyle 1.1\)

\(\displaystyle 11\)

\(\displaystyle .1\)

\(\displaystyle .011\)

\(\displaystyle .11\)

Correct answer:

\(\displaystyle .11\)

Explanation:

\(\displaystyle \frac{11}{100}\) is eleven hundredths. 

\(\displaystyle .11\) is eleven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Learning Tools by Varsity Tutors