Common Core: 4th Grade Math : Common Core Math: Grade 4

Study concepts, example questions & explanations for Common Core: 4th Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Subtracting Multi Digit Numbers

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}979\\ -\ 930\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 47\)

\(\displaystyle 49\)

\(\displaystyle 48\)

\(\displaystyle 46\)

Correct answer:

\(\displaystyle 49\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 0\end{array}}{\ \ \ 9 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 3\end{array}}{\ \ \ 4}\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 9\end{array}}{\ \ \ 0}\)

Your final answer should be \(\displaystyle 49\)

\(\displaystyle \frac{\begin{array}[b]{r}979\\ -\ 930\end{array}}{\ \ \ \ \ 49}\)

Example Question #2 : Subtracting Multi Digit Numbers

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}639\\ -\ 438\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 200\)

\(\displaystyle 201\)

\(\displaystyle 202\)

\(\displaystyle 203\)

Correct answer:

\(\displaystyle 201\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 8\end{array}}{\ \ \ 1 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 3\end{array}}{\ \ \ 0 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 4\end{array}}{\ \ \ 2}\)

Your final answer should be \(\displaystyle 201\)

\(\displaystyle \frac{\begin{array}[b]{r}639\\ -\ 438\end{array}}{\ \ \ \ 201}\)

Example Question #3 : Subtracting Multi Digit Numbers

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}830\\ -\ 110\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 721\)

\(\displaystyle 723\)

\(\displaystyle 722\)

\(\displaystyle 720\)

Correct answer:

\(\displaystyle 720\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}0\\ -\ 0\end{array}}{\ \ \ 0 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 1\end{array}}{\ \ \ 2 }\)

 Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 1\end{array}}{\ \ \ 7}\)

Your final answer should be \(\displaystyle 720\)

\(\displaystyle \frac{\begin{array}[b]{r}830\\ -\ 110\end{array}}{\ \ \ 720}\)

Example Question #21 : Fluently Add And Subtract Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.4

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}697\\ -\ 335\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 362\)

\(\displaystyle 363\)

\(\displaystyle 360\)

\(\displaystyle 361\)

Correct answer:

\(\displaystyle 362\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 5\end{array}}{\ \ \ 2 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 3\end{array}}{\ \ \ 6 }\)

 Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 3\end{array}}{\ \ \ 3}\)

Your final answer should be \(\displaystyle 362\)

\(\displaystyle \frac{\begin{array}[b]{r}397\\ -\ 335\end{array}}{\ \ \ \ 362}\)

Example Question #22 : Fluently Add And Subtract Multi Digit Numbers: Ccss.Math.Content.4.Nbt.B.4

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}385\\ -\ 231\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 155\)

\(\displaystyle 152\)

\(\displaystyle 153\)

\(\displaystyle 154\)

Correct answer:

\(\displaystyle 154\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{\ \ \ 4 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 3\end{array}}{\ \ \ 5 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{\ \ \ 1}\)

Your final answer should be \(\displaystyle 154\)

\(\displaystyle \frac{\begin{array}[b]{r}385\\ -\ 231\end{array}}{\ \ \ 154}\)

Example Question #11 : Subtracting Multi Digit Numbers

Solve:

\(\displaystyle \frac{\begin{array}[b]{r}566\\ -\ 123\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 445\)

\(\displaystyle 446\)

\(\displaystyle 444\)

\(\displaystyle 443\)

Correct answer:

\(\displaystyle 443\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 3\end{array}}{\ \ \ 3 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 2\end{array}}{\ \ \ 4 }\)

 

Finally, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 1\end{array}}{\ \ \ 4}\)

Your final answer should be \(\displaystyle 443\)

\(\displaystyle \frac{\begin{array}[b]{r}566\\ -\ 123\end{array}}{\ \ \ \ 443}\)

Example Question #12 : Subtracting Multi Digit Numbers

Solve the following:

\(\displaystyle \frac{\begin{array}[b]{r}417\\ -\ 250\end{array}}{\space }\)

Possible Answers:

\(\displaystyle 167\)

\(\displaystyle 166\)

\(\displaystyle 169\)

\(\displaystyle 168\)

Correct answer:

\(\displaystyle 167\)

Explanation:

When we subtract multi-digit numbers, we start with the digits in the ones place and move to the left. 

Let's look at the numbers in the ones place:

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 0\end{array}}{\ \ \ 7 }\)

Next, let's look at the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}1\\ -\ 5\end{array}}{\ \ \ }\)

When the top number is smaller than the bottom number, we have to borrow from the number to the left because we can't take \(\displaystyle 5\) away from \(\displaystyle 1\) since \(\displaystyle 1\) is the smaller number. In this case, we are going to look to the \(\displaystyle 4\). We only ever need to take \(\displaystyle 1\) away from the number to the left. For this problem, that will leave us with a \(\displaystyle 3\) to replace the \(\displaystyle 4\). So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{3} \not417\\ -\ 250\end{array}}{\space }\)

Remember, we've borrowed \(\displaystyle 1\) from the hundreds place, so we can put a \(\displaystyle 1\) in front of the number in the tens place. So far, your work should look something like this:

\(\displaystyle \frac{\begin{array}[b]{r}^{3} \not4\ ^{11}\not1\ \ \ \ \ 7\\ -\ 2 \ \ \ \ \ 5\ \ \ \ \ 0\end{array}}{\space }\)

Now, we can subtract the numbers in the tens place:

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 5\end{array}}{\ \ \ 6}\)

Next, we can subtract the numbers in the hundreds place:

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{\ \ \ 1}\)

Your final answer should be \(\displaystyle 167\)

\(\displaystyle \frac{\begin{array}[b]{r}^{3} \not4\ ^{11}\not1\ \ \ \ \ 7\\ -\ 2 \ \ \ \ \ 5\ \ \ \ \ 0\end{array}}{\ \ \ \ 1 \ \ \ \ \ 6\ \ \ \ \ 7}\)

Example Question #1301 : Common Core Math: Grade 4

What is the length of a rectangular room with a perimeter of \(\displaystyle 42ft\) and a width of \(\displaystyle 7ft?\)

Possible Answers:

\(\displaystyle 12ft\)

\(\displaystyle 28ft\)

\(\displaystyle 18ft\)

\(\displaystyle 14ft\)

\(\displaystyle 22ft\)

Correct answer:

\(\displaystyle 14ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 42=2l+2(7)\)

\(\displaystyle 42=2l+14\)

Subtract \(\displaystyle 14\) from both sides

\(\displaystyle 42-14=2l+14-14\)

\(\displaystyle 28=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{28}{2}=\frac{2l}{2}\)

\(\displaystyle 14=l\)

Example Question #1302 : Common Core Math: Grade 4

What is the length of a rectangular room with a perimeter of \(\displaystyle 62ft\) and a width of \(\displaystyle 8ft?\)

 

Possible Answers:

\(\displaystyle 38ft\)

\(\displaystyle 23ft\)

\(\displaystyle 46ft\)

\(\displaystyle 40ft\)

\(\displaystyle 37ft\)

Correct answer:

\(\displaystyle 23ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 62=2l+2(8)\)

\(\displaystyle 62=2l+16\)

Subtract \(\displaystyle 16\) from both sides

\(\displaystyle 62-16=2l+16-16\)

\(\displaystyle 46=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{46}{2}=\frac{2l}{2}\)

\(\displaystyle 23=l\)

Example Question #2 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with a perimeter of \(\displaystyle 92ft\) and a width of \(\displaystyle 21ft?\)

 

Possible Answers:

\(\displaystyle 25ft\)

\(\displaystyle 30ft\)

\(\displaystyle 40ft\)

\(\displaystyle 45ft\)

\(\displaystyle 50ft\)

Correct answer:

\(\displaystyle 25ft\)

Explanation:

\(\displaystyle P=2l+ 2w\)

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\(\displaystyle 92=2l+2(21)\)

\(\displaystyle 92=2l+42\)

Subtract \(\displaystyle 42\) from both sides

\(\displaystyle 92-42=2l+42-42\)

\(\displaystyle 50=2l\)

Divide \(\displaystyle 2\) by both sides

\(\displaystyle \frac{50}{2}=\frac{2l}{2}\)

\(\displaystyle 25=l\)

Learning Tools by Varsity Tutors