Common Core: 2nd Grade Math : Common Core Math: Grade 2

Study concepts, example questions & explanations for Common Core: 2nd Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #451 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \(\displaystyle 5\) dimes and \(\displaystyle 1\) nickel, how much money do I have? 

Possible Answers:

\(\displaystyle 65\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 78\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 62\cent\)

Correct answer:

\(\displaystyle 55\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have five dimes and one nickel. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ 10\cent\\ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle 5\cent\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 5\cent\end{array}}{ \ \ \space 55\cent}\)

Example Question #311 : Measurement & Data

If I have \(\displaystyle 3\) quarters and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 65\cent\)

\(\displaystyle 79\cent\)

\(\displaystyle 77\cent\)

\(\displaystyle 68\cent\)

\(\displaystyle 74\cent\)

Correct answer:

\(\displaystyle 77\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have three quarters and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ 25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 75\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}75\cent\\ +\ 2\cent\end{array}}{ \ \ \space 77\cent}\)

Example Question #2543 : Numbers And Operations

If I have \(\displaystyle 5\) nickels and \(\displaystyle 3\) dimes, how many cents do I have? 

Possible Answers:

\(\displaystyle 53\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 80\cent\)

\(\displaystyle 63\cent\)

\(\displaystyle 74\cent\)

Correct answer:

\(\displaystyle 55\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have five nickels and three dimes. 

\(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ 5\cent\\ \ 5\cent\\5\cent\\ +\ 5\cent\end{array}}{ \ \ \ \space 25\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 30\cent\end{array}}{ \ \ \ \space 55\cent}\)

Example Question #454 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \(\displaystyle 1\) quarter and \(\displaystyle 3\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 22\cent\)

\(\displaystyle 38\cent\)

\(\displaystyle 30\cent\)

\(\displaystyle 25\cent\)

\(\displaystyle 28\cent\)

Correct answer:

\(\displaystyle 28\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have one quarters and three pennies. 

\(\displaystyle 25\cent\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ \ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 3\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 3\cent\end{array}}{ \ \ \space 28\cent}\)

Example Question #2541 : Numbers And Operations

If I have \(\displaystyle 3\) dimes and \(\displaystyle 2\) nickels, how many cents do I have? 

Possible Answers:

\(\displaystyle 10\cent\)

\(\displaystyle 20\cent\)

\(\displaystyle 40\cent\)

\(\displaystyle 5\cent\)

\(\displaystyle 30\cent\)

Correct answer:

\(\displaystyle 40\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have three dimes and two nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\10\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 30\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 10\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}30\cent\\ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)

Example Question #22 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 7\) pennies and \(\displaystyle 4\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 37\cent\)

\(\displaystyle 32\cent\)

\(\displaystyle 27\cent\)

\(\displaystyle 35\cent\)

\(\displaystyle 29\cent\)

Correct answer:

\(\displaystyle 27\cent\)

Explanation:

Each penny is worth \(\displaystyle 1\cent\) and each nickel is worth \(\displaystyle 5\cent.\)

We have seven pennies and four nickels. 

\(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\ 1\cent\\ 1\cent\\ \ 1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 7\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}7\cent\\ +\ 20\cent\end{array}}{ \ \ \ \space 27\cent}\)

Example Question #457 : Isee Lower Level (Grades 5 6) Quantitative Reasoning

If I have \(\displaystyle 4\) pennies and \(\displaystyle 2\) quarters, how many cents do I have?

Possible Answers:

\(\displaystyle 53\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 52\cent\)

\(\displaystyle 54\cent\)

\(\displaystyle 56\cent\)

Correct answer:

\(\displaystyle 54\cent\)

Explanation:

Each penny is worth \(\displaystyle 1\cent\) and each quarter is worth \(\displaystyle 25\cent.\)

We have four pennies and two quarters. 

\(\displaystyle \frac{\begin{array}[b]{r}1\cent\\1\cent\\ 1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 4\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}4\cent\\ +\ 50\cent\end{array}}{ \ \ \ \space 54\cent}\)

Example Question #31 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 4\) nickels and \(\displaystyle 4\) dimes, how many cents do I have?

Possible Answers:

\(\displaystyle 42\cent\)

\(\displaystyle 40\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 55\cent\)

\(\displaystyle 56\cent\)

Correct answer:

\(\displaystyle 60\cent\)

Explanation:

Each nickel is worth \(\displaystyle 5\cent\) and each dime is worth \(\displaystyle 10\cent\).

We have four nickels and four dimes.

 \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 20\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ \ 10\cent\\10\cent\\ \ +\ 10\cent\end{array}}{ \ \ \ \space 40\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}20\cent\\ +\ 40\cent\end{array}}{ \ \ \ \space 60\cent}\)

Example Question #31 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 2\) quarter and \(\displaystyle 3\) nickels, how many cents do I have?

Possible Answers:

\(\displaystyle 63\cent\)

\(\displaystyle 65\cent\)

\(\displaystyle 53\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 50\cent\)

Correct answer:

\(\displaystyle 65\cent\)

Explanation:

Each quarter is worth \(\displaystyle 25\cent\) and each nickel is worth \(\displaystyle 5\cent\).

We have two quarters and three nickels.

 \(\displaystyle \frac{\begin{array}[b]{r}25\cent\\ +\ 25\cent\end{array}}{ \ \ \ \space 50\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}5\cent\\ \ 5\cent\\ +\ 5\cent\end{array}}{ \ \ \space 15\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}50\cent\\ +\ 15\cent\end{array}}{ \ \ \ \space 65\cent}\)

Example Question #31 : Solve Word Problems Involving Money: Ccss.Math.Content.2.Md.C.8

If I have \(\displaystyle 6\) dimes and \(\displaystyle 2\) pennies, how many cents do I have? 

Possible Answers:

\(\displaystyle 64\cent\)

\(\displaystyle 69\cent\)

\(\displaystyle 60\cent\)

\(\displaystyle 62\cent\)

\(\displaystyle 68\cent\)

Correct answer:

\(\displaystyle 62\cent\)

Explanation:

Each dime is worth \(\displaystyle 10\cent\) and each penny is worth \(\displaystyle 1\cent\).

We have six dimes and two pennies. 

\(\displaystyle \frac{\begin{array}[b]{r}10\cent\\ 10\cent\\ 10\cent\\ 10\cent\\ \ 10\cent\\+\ 10\cent\end{array}}{ \ \ \ \space 60\cent}\) \(\displaystyle \frac{\begin{array}[b]{r}1\cent\\ +\ 1\cent\end{array}}{ \ \ \ \space 2\cent}\)

\(\displaystyle \frac{\begin{array}[b]{r}60\cent\\ +\ 2\cent\end{array}}{ \ \ \space 62\cent}\)

Learning Tools by Varsity Tutors