Common Core: 1st Grade Math : Place Value and Properties of Operations to Add and Subtract

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Place Value And Properties Of Operations To Add And Subtract

Add:

\displaystyle \frac{\begin{array}[b]{r}36\\ +\ 11\end{array}}{ \ \ \space}

Possible Answers:

\displaystyle 47

\displaystyle 45

\displaystyle 42

\displaystyle 43

Correct answer:

\displaystyle 47

Explanation:

When we add two digit numbers, we start by adding the numbers in the ones place.

\displaystyle \frac{\begin{array}[b]{r}3{\color{Red} 6}\\ +\ 1{\color{Red} 1}\end{array}}{ \ \ \ \ \ \space7}

Next, we need to add the numbers in the tens place. 

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 3}6\\ +\ {\color{Red} 1}1\end{array}}{ \ \ \ \space47}

The final answer is \displaystyle 47

Example Question #12 : Place Value And Properties Of Operations To Add And Subtract

Solve the following:

\displaystyle \frac{\begin{array}[b]{r}18\\ +\ 51\end{array}}{ \ \ \space}

Possible Answers:

\displaystyle 68

\displaystyle 67

\displaystyle 66

\displaystyle 69

Correct answer:

\displaystyle 69

Explanation:

When we add two digit numbers, we start by adding the numbers in the ones place.

\displaystyle \frac{\begin{array}[b]{r}1{\color{Red} 8}\\ +\ 5{\color{Red} 1}\end{array}}{ \ \ \ \ \ \space9}

Next, we need to add the numbers in the tens place. 

\displaystyle \frac{\begin{array}[b]{r}{\color{Red} 1}8\\ +\ {\color{Red} 5}1\end{array}}{ \ \ \ \space69}

The final answer is \displaystyle 69

Example Question #11 : Place Value And Properties Of Operations To Add And Subtract

\displaystyle \frac{\begin{array}[b]{r}15\\ +\ 10\end{array}}{ \ \ \space}

Possible Answers:

\displaystyle 5

\displaystyle 25

\displaystyle 30

\displaystyle 10

\displaystyle 35

Correct answer:

\displaystyle 25

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 1+1=2

\displaystyle \frac{\begin{array}[b]{r}15\\ +\ 10\end{array}}{ \ \ \ \ \space25}

Example Question #12 : Place Value And Properties Of Operations To Add And Subtract

\displaystyle \frac{\begin{array}[b]{r}10\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 10

\displaystyle 0

\displaystyle 20

\displaystyle 30

\displaystyle 5

Correct answer:

\displaystyle 20

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 1+1=2

\displaystyle \frac{\begin{array}[b]{r}10\\ +\ 10\end{array}}{ \ \ \ \space20}

Example Question #1304 : How To Add

\displaystyle \frac{\begin{array}[b]{r}20\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 15

\displaystyle 10

\displaystyle 40

\displaystyle 5

\displaystyle 30

Correct answer:

\displaystyle 30

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 2+1=3

\displaystyle \frac{\begin{array}[b]{r}20\\ +\ 10\end{array}}{ \ \ \ \space30}

Example Question #1311 : How To Add

\displaystyle \frac{\begin{array}[b]{r}25\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 30

\displaystyle 15

\displaystyle 20

\displaystyle 25

\displaystyle 35

Correct answer:

\displaystyle 35

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 2+1=3

\displaystyle \frac{\begin{array}[b]{r}25\\ +\ 10\end{array}}{ \ \ \ \space35}

Example Question #1312 : How To Add

\displaystyle \frac{\begin{array}[b]{r}30\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 70

\displaystyle 60

\displaystyle 80

\displaystyle 40

\displaystyle 50

Correct answer:

\displaystyle 40

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 3+1=4

\displaystyle \frac{\begin{array}[b]{r}20\\ +\ 10\end{array}}{ \ \ \ \space40}

Example Question #3 : Add And Subtract 10 To Two Digit Numbers: Ccss.Math.Content.1.Nbt.C.5

\displaystyle \frac{\begin{array}[b]{r}35\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 35

\displaystyle 40

\displaystyle 30

\displaystyle 25

\displaystyle 45

Correct answer:

\displaystyle 45

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 3+1=4

\displaystyle \frac{\begin{array}[b]{r}35\\ +\ 10\end{array}}{ \ \ \ \space45}

Example Question #1313 : How To Add

\displaystyle \frac{\begin{array}[b]{r}40\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 50

\displaystyle 60

\displaystyle 30

\displaystyle 70

\displaystyle 40

Correct answer:

\displaystyle 50

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 4+1=5

\displaystyle \frac{\begin{array}[b]{r}40\\ +\ 10\end{array}}{ \ \ \ \space50}

Example Question #284 : Number & Operations In Base Ten

\displaystyle \frac{\begin{array}[b]{r}45\\ +\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 50

\displaystyle 55

\displaystyle 40

\displaystyle 65

\displaystyle 45

Correct answer:

\displaystyle 55

Explanation:

When we add \displaystyle 10 to a two digit number, the only number that changes in our answer is the tens position, and it will always go up by \displaystyle 1. Mentally, we can add \displaystyle 1 to the number in the tens place to find our answer. 

\displaystyle 4+1=5

\displaystyle \frac{\begin{array}[b]{r}45\\ +\ 10\end{array}}{ \ \ \ \space55}

Learning Tools by Varsity Tutors