Common Core: 1st Grade Math : Place Value and Properties of Operations to Add and Subtract

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \space}

Possible Answers:

\displaystyle 50

\displaystyle 100

\displaystyle 60

\displaystyle 80

\displaystyle 70

Correct answer:

\displaystyle 80

Explanation:

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 9-1=8

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \ \space80}

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 80

\displaystyle 60

\displaystyle 90

\displaystyle 50

\displaystyle 70

Correct answer:

\displaystyle 50

Explanation:

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 8-3=5

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \ \space50}

Example Question #2 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

Solve the following:

\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \space}

Possible Answers:

\displaystyle 20

\displaystyle 50

\displaystyle 30

\displaystyle 40

\displaystyle 10

Correct answer:

\displaystyle 50

Explanation:

\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 7-2=5

\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \ \space50}

Example Question #841 : How To Subtract

\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 30

\displaystyle 10

\displaystyle 0

\displaystyle 20

\displaystyle 40

Correct answer:

\displaystyle 0

Explanation:

\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 6-6=0

\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \ \ \ \space0}

Example Question #321 : Number & Operations In Base Ten

\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 0

\displaystyle 20

\displaystyle 10

\displaystyle 30

\displaystyle 40

Correct answer:

\displaystyle 10

Explanation:

\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 5-4=1

\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \ \space10}

Example Question #971 : Numbers And Operations

\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 30

\displaystyle 40

\displaystyle 10

\displaystyle 0

\displaystyle 20

Correct answer:

\displaystyle 30

Explanation:

\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 4-1=3

\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \ \space30}

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 10

\displaystyle 50

\displaystyle 40

\displaystyle 30

\displaystyle 20

Correct answer:

\displaystyle 10

Explanation:

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 3-2=1

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \ \space10}

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 50

\displaystyle 20

\displaystyle 10

\displaystyle 30

\displaystyle 40

Correct answer:

\displaystyle 20

Explanation:

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 3-1=2

\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \ \space20}

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 50

\displaystyle 40

\displaystyle 20

\displaystyle 60

\displaystyle 30

Correct answer:

\displaystyle 40

Explanation:

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 9-5=4

\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \ \space40}

Example Question #10 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \space}

 

Possible Answers:

\displaystyle 50

\displaystyle 20

\displaystyle 30

\displaystyle 60

\displaystyle 40

Correct answer:

\displaystyle 20

Explanation:

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \space}

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\displaystyle 0-0=0

\displaystyle 8-6=2

\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \ \space20}

Learning Tools by Varsity Tutors