Common Core: 1st Grade Math : Place Value and Properties of Operations to Add and Subtract

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \space}\)

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 60\)

\(\displaystyle 100\)

\(\displaystyle 70\)

\(\displaystyle 80\)

Correct answer:

\(\displaystyle 80\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-1=8\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 10\end{array}}{ \ \ \ \space80}\)

Example Question #61 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 80\)

\(\displaystyle 70\)

\(\displaystyle 60\)

\(\displaystyle 90\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 50\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-3=5\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 30\end{array}}{ \ \ \ \space50}\)

Example Question #842 : How To Subtract

Solve the following:

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \space}\)

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 20\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 50\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 7-2=5\)

\(\displaystyle \frac{\begin{array}[b]{r}70\\ -\ 20\end{array}}{ \ \ \ \space50}\)

Example Question #2 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 30\)

\(\displaystyle 0\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 0\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 6-6=0\)

\(\displaystyle \frac{\begin{array}[b]{r}60\\ -\ 60\end{array}}{ \ \ \ \ \ \space0}\)

Example Question #62 : Place Value And Properties Of Operations To Add And Subtract

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 40\)

\(\displaystyle 10\)

\(\displaystyle 30\)

\(\displaystyle 20\)

Correct answer:

\(\displaystyle 10\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 5-4=1\)

\(\displaystyle \frac{\begin{array}[b]{r}50\\ -\ 40\end{array}}{ \ \ \ \space10}\)

Example Question #3 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 20\)

\(\displaystyle 40\)

\(\displaystyle 30\)

\(\displaystyle 10\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 30\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 4-1=3\)

\(\displaystyle \frac{\begin{array}[b]{r}40\\ -\ 10\end{array}}{ \ \ \ \space30}\)

Example Question #2 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 40\)

\(\displaystyle 50\)

\(\displaystyle 20\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 10\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 3-2=1\)

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 20\end{array}}{ \ \ \ \space10}\)

Example Question #761 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 40\)

\(\displaystyle 20\)

\(\displaystyle 50\)

\(\displaystyle 30\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 3-1=2\)

\(\displaystyle \frac{\begin{array}[b]{r}30\\ -\ 10\end{array}}{ \ \ \ \space20}\)

Example Question #762 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 60\)

\(\displaystyle 20\)

\(\displaystyle 40\)

\(\displaystyle 30\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 40\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 9-5=4\)

\(\displaystyle \frac{\begin{array}[b]{r}90\\ -\ 50\end{array}}{ \ \ \ \space40}\)

Example Question #10 : Subtract Multiples Of 10 From Multiples Of 10: Ccss.Math.Content.1.Nbt.C.6

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \space}\)

 

Possible Answers:

\(\displaystyle 50\)

\(\displaystyle 20\)

\(\displaystyle 30\)

\(\displaystyle 60\)

\(\displaystyle 40\)

Correct answer:

\(\displaystyle 20\)

Explanation:

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \space}\)

When we subtract two digit numbers, we always start with the ones place, on the right, and work our way to the left. 

\(\displaystyle 0-0=0\)

\(\displaystyle 8-6=2\)

\(\displaystyle \frac{\begin{array}[b]{r}80\\ -\ 60\end{array}}{ \ \ \ \space20}\)

Learning Tools by Varsity Tutors