Common Core: 1st Grade Math : Adding and Subtracting Within 20: CCSS.MATH.CONTENT.1.OA.C.6

Study concepts, example questions & explanations for Common Core: 1st Grade Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #732 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 6\end{array}}{ \ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 1\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 7\) and count back \(\displaystyle 6\).

\(\displaystyle 7, 6, 5, 4, 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 6\end{array}}{ \ \ \ \space 1}\)

Example Question #733 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 1\end{array}}{ \ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 5\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 6\) and count back \(\displaystyle 1\).

\(\displaystyle 6,5\)

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 1\end{array}}{ \ \ \ \space 5}\)

Example Question #734 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 7\end{array}}{ \ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 2\)

\(\displaystyle 5\)

\(\displaystyle 3\)

\(\displaystyle 4\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 10\) and count back \(\displaystyle 7\).

\(\displaystyle 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 7\end{array}}{ \ \ \ \space 3}\)

Example Question #735 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}12\\ -\ 9\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 0\)

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 12\) and count back \(\displaystyle 9\).

\(\displaystyle 12, 11, 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}12\\ -\ 9\end{array}}{ \ \ \ \space 3}\)

Example Question #736 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 4\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 9\)

\(\displaystyle 11\)

\(\displaystyle 10\)

\(\displaystyle 13\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 9\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 13\) and count back \(\displaystyle 4\).

\(\displaystyle 13, 12, 11, 10, 9\)

\(\displaystyle \frac{\begin{array}[b]{r}13\\ -\ 4\end{array}}{ \ \ \ \space 9}\)

Example Question #737 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 11\)

\(\displaystyle 12\)

\(\displaystyle 10\)

\(\displaystyle 13\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 12\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 14\) and count back \(\displaystyle 2\).

\(\displaystyle 14,13,12\)

\(\displaystyle \frac{\begin{array}[b]{r}14\\ -\ 2\end{array}}{ \ \ \space 12}\)

Example Question #738 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 8\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 9\)

\(\displaystyle 7\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 15\) and count back \(\displaystyle 8\).

\(\displaystyle 15, 14, 13, 12, 11, 10, 9, 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}15\\ -\ 8\end{array}}{ \ \ \ \space 7}\)

Example Question #739 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 12\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 1\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 16\) and count back \(\displaystyle 12\).

\(\displaystyle 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4\)

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 12\end{array}}{ \ \ \ \ \ \space 4}\)

Example Question #740 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 10\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 11\)

\(\displaystyle 9\)

\(\displaystyle 10\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 10\).

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 10\end{array}}{ \ \ \ \ \ \space 7}\)

Example Question #741 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 15\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 5\)

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 18\) and count back \(\displaystyle 15\).

\(\displaystyle 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 15\end{array}}{ \ \ \ \ \ \space 3}\)

Learning Tools by Varsity Tutors