College Algebra : College Algebra

Study concepts, example questions & explanations for College Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #171 : College Algebra

Function

The above diagram shows the graph of function  on the coordinate axes. True or false: The -intercept of the graph is 

Possible Answers:

False

True

Correct answer:

False

Explanation:

The -intercept of the graph of a function is the point at which it intersects the -axis (the vertical axis). That point is marked on the diagram below:

Function

The point is about one and three-fourths units above the origin, making the coordinates of the -intercept .

Example Question #3 : Miscellaneous Functions

Function

A function  is defined on the domain  according to the above table. 

Define a function . Which of the following values is not in the range of the function ?

Possible Answers:

Correct answer:

Explanation:

This is the composition of two functions. By definition, .  To find the range of , we need to find the values of this function for each value in the domain of . Since , this is equivalent to evaluating  for each value in the range of , as follows:

 

Range value: 3 

Range value: 5

Range value: 8

Range value: 13

Range value: 21

 

The range of  on the set of range values of  - and consequently, the range of  - is the set . Of  the five choices, only 45 does not appear in this set; this is the correct choice.

Example Question #3 : Miscellaneous Functions

Evaluate: 

Possible Answers:

Correct answer:

Explanation:

Evaluate the expression  for , then add the four numbers:

 

Example Question #4 : Miscellaneous Functions

Evaluate: 

Possible Answers:

Correct answer:

Explanation:

Evaluate the expression  for , then add the five numbers:

Example Question #2 : Miscellaneous Functions

refers to the floor of , the greatest integer less than or equal to .

refers to the ceiling of , the least integer greater than or equal to .

Define and

Which of the following is equal to ?

Possible Answers:

Correct answer:

Explanation:

, so, first, evaluate  by substitution:

, so evaluate by substitution.

,

the correct response.

Example Question #3 : Miscellaneous Functions

refers to the floor of , the greatest integer less than or equal to .

refers to the ceiling of , the least integer greater than or equal to .

Define and .

Evaluate

Possible Answers:

Correct answer:

Explanation:

, so first, evaluate using substitution:

, so evaluate using substitution:

,

the correct response.

Example Question #172 : College Algebra

Consider the polynomial

,

where  is a real constant. For  to be a zero of this polynomial, what must  be?

Possible Answers:

None of the other choices gives the correct response.

Correct answer:

Explanation:

By the Factor Theorem,  is a zero of a polynomial  if and only if . Here, , so evaluate the polynomial, in terms of , for  by substituting 2 for :

Set this equal to 0:

Example Question #2 : Simplifying Polynomials

Divide the trinomial below by .

Possible Answers:

Correct answer:

Explanation:

We can accomplish this division by re-writing the problem as a fraction.

The denominator will distribute, allowing us to address each element separately.

Now we can cancel common factors to find our answer.

Example Question #1 : Polynomial Functions

Simplify:

Possible Answers:

Correct answer:

Explanation:

First, factor the numerator of the quotient term by recognizing the difference of squares:

Cancel out the common term from the numerator and denominator:

FOIL (First Outer Inner Last) the first two terms of the equation:

Combine like terms:

Example Question #2 : Dividing Polynomials

Divide:

Possible Answers:

Correct answer:

Explanation:

First, rewrite this problem so that the missing  term is replaced by 

Divide the leading coefficients:

, the first term of the quotient

Multiply this term by the divisor, and subtract the product from the dividend:

Repeat this process with each difference:

, the second term of the quotient

One more time:

, the third term of the quotient

, the remainder

The quotient is  and the remainder is ; this can be rewritten as a quotient of 

Learning Tools by Varsity Tutors