All Calculus AB Resources
Example Questions
Example Question #1 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable u to substitute for a variable of x.
For this problem, we will let u replace the expression .
Next, we must take the derivative of u. Its derivative is .
Next, solve this equation for dx so that we may replace it in the integral.
Plug in place of and in place of into the original integral and simplify.
The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace u with the original expression, adding the constant to the answer.
The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
8.
9.
Example Question #2 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of u. Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2. =
3.
4.
5.
6.
7.
8.
Example Question #3 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #4 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #5 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #6 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #7 : Use Substitution And Integration
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
8.
Example Question #1 : Complete The Square With Integration
What is complete the square?
We draw the remaining sides of a square
Method for manipulating a quadratic equation for the quadratic equation
Square the function
Method for manipulating a quadratic equation into something able to be factored
Method for manipulating a quadratic equation into something able to be factored
Say we have the equation . It is pretty hard to solve for in this way. Instead we can use a method called complete the square. Here we will add to both sides which will make it factorable.
Example Question #1 : Complete The Square With Integration
Why would one need to use complete the square when integrating?
To use the quadratic formula
Only when we are asked to in a problem
When we need to manipulate an equation into a recognizable identity often for a difference of squares.
To find the roots of a function
When we need to manipulate an equation into a recognizable identity often for a difference of squares.
While some of these answers can be obtained by using complete the square, they are not the goal of using complete the square to integrate. When we integrate, it is often hard to see when we may need to use a trigonometric identity or a log identity. Using complete the square, we are able to manipulate our integrals in order to see these identities.
Example Question #1 : Complete The Square With Integration
Use complete the square and show what the following equation would look like after it is applied .
To complete the square we can use one of two methods. We could use the formula and add . Or if we recognize a factor that could work we can follow that route as well. So I am going to demonstrate the latter since the former is simply plugging into a formula. We will consider . Now to factor our left hand side using complete the square we only consider .
looks similar to a common factorable equation . We can manipulate the equation by adding and subtracting in the same step.
We plug this back into our original equation:
Certified Tutor
Certified Tutor