All Calculus 3 Resources
Example Questions
Example Question #47 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
Example Question #48 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
Example Question #49 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
This result is due to the columns being linearly dependent, i.e. multiples of each other. The first column is three times the second column.
Example Question #50 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
Example Question #51 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
Example Question #52 : Matrices
Find the determinant of the matrix
The determinant of a 2x2 matrix can be found by cross multiplying terms as follows:
For the matrix
The determinant is thus:
Example Question #53 : Matrices
Find the matrix product of , where
and
.
In order to multiply two matrices, , the respective dimensions of each must be of the form
and
to create an
(notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.
For a multiplication of the form
The resulting matrix is
The notation may be daunting but numerical examples may elucidate.
We're told that and
The resulting matrix product is then:
Example Question #54 : Matrices
Find the matrix product of , where
and
.
In order to multiply two matrices, , the respective dimensions of each must be of the form
and
to create an
(notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.
For a multiplication of the form
The resulting matrix is
The notation may be daunting but numerical examples may elucidate.
We're told that and
The resulting matrix product is then:
Example Question #55 : Matrices
Find the matrix product of , where
and
.
In order to multiply two matrices, , the respective dimensions of each must be of the form
and
to create an
(notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.
For a multiplication of the form
The resulting matrix is
The notation may be daunting but numerical examples may elucidate.
We're told that and
The resulting matrix product is then:
Example Question #56 : Matrices
Find the matrix product of , where
and
.
In order to multiply two matrices, , the respective dimensions of each must be of the form
and
to create an
(notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.
For a multiplication of the form
The resulting matrix is
The notation may be daunting but numerical examples may elucidate.
We're told that and
The resulting matrix product is then:
Certified Tutor
All Calculus 3 Resources
