Calculus 3 : Surface Integrals

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #81 : Stokes' Theorem

Let S be a known surface with a boundary curve, C.

Considering the integral , utilize Stokes' Theorem to determine  for an equivalent integral of the form:

Possible Answers:

Correct answer:

Explanation:

In order to utilize Stokes' theorem, note its form

The curl of a vector function F over an oriented surface S is equivalent to the function itself integrated over the boundary curve, C, of S.

Note that

From what we're told

And it can be inferred from this that

A helpful approach can be to look at the right sides of the equations and see what variables are represented compared to what variables a vector component of F is being derived for. Doing this and integrating, we can infer that

and

Example Question #3912 : Calculus 3

Let S be a known surface with a boundary curve, C.

Considering the integral , utilize Stokes' Theorem to determine  for an equivalent integral of the form:

Possible Answers:

Correct answer:

Explanation:

In order to utilize Stokes' theorem, note its form

The curl of a vector function F over an oriented surface S is equivalent to the function itself integrated over the boundary curve, C, of S.

Note that

From what we're told

And it can be inferred from this that

A helpful approach can be to look at the right sides of the equations and see what variables are represented compared to what variables a vector component of F is being derived for. Doing this and integrating, we can infer that

and

Example Question #83 : Stokes' Theorem

Let S be a known surface with a boundary curve, C.

Considering the integral , utilize Stokes' Theorem to determine  for an equivalent integral of the form:

Possible Answers:

Correct answer:

Explanation:

In order to utilize Stokes' theorem, note its form

The curl of a vector function F over an oriented surface S is equivalent to the function itself integrated over the boundary curve, C, of S.

Note that

From what we're told

And it can be inferred from this that

A helpful approach can be to look at the right sides of the equations and see what variables are represented compared to what variables a vector component of F is being derived for. Doing this and integrating, we can infer that

and

Example Question #84 : Stokes' Theorem

Let S be a known surface with a boundary curve, C.

Considering the integral , utilize Stokes' Theorem to determine  for an equivalent integral of the form:

Possible Answers:

Correct answer:

Explanation:

In order to utilize Stokes' theorem, note its form

The curl of a vector function F over an oriented surface S is equivalent to the function itself integrated over the boundary curve, C, of S.

Note that

From what we're told

And it can be inferred from this that

A helpful approach can be to look at the right sides of the equations and see what variables are represented compared to what variables a vector component of F is being derived for. Doing this and integrating, we can infer that

and

Example Question #1 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Example Question #1 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Example Question #2 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Example Question #2 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Example Question #3 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Example Question #4 : Divergence Theorem

Find the divergence of the function  at 

Possible Answers:

Correct answer:

Explanation:

Divergence can be viewed as a measure of the magnitude of a vector field's source or sink at a given point.

To visualize this, picture an open drain in a tub full of water; this drain may represent a 'sink,' and all of the velocities at each specific point in the tub represent the vector field. Close to the drain, the velocity will be greater than a spot farther away from the drain.

Vectorfield

What divergence can calculate is what this velocity is at a given point. Again, the magnitude of the vector field.

We're given the function

 at 

What we will do is take the derivative of each vector element with respect to its variable 

Then sum the results together:

Learning Tools by Varsity Tutors