All Calculus 3 Resources
Example Questions
Example Question #31 : Surface Integrals
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #32 : Surface Integrals
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #31 : Stokes' Theorem
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #34 : Surface Integrals
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #31 : Surface Integrals
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #36 : Surface Integrals
Let S be a known surface with a boundary curve, C.
Considering the integral , utilize Stokes' Theorem to determine an equivalent integral of the form:
In order to utilize Stokes' theorem, note its form
The curl of a vector function F over an oriented surface S is equivalent to the function F itself integrated over the boundary curve, C, of S.
Note that
From what we're told
Example Question #31 : Stokes' Theorem
Example Question #32 : Stokes' Theorem
Example Question #33 : Stokes' Theorem
Example Question #34 : Stokes' Theorem
Certified Tutor