Calculus 3 : Dot Product

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #42 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #43 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #44 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #45 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #46 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #47 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #48 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #49 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #50 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Learning Tools by Varsity Tutors