All Calculus 3 Resources
Example Questions
Example Question #11 : Dot Product
For what angle(s) is the dot product of two vectors ?
We have the following equation that shows the relation between the dot product of two vectors, , to the relative angle between them ,
.
From this, we can see that the numerator will be whenever .
for all odd-multiples of , which in one rotation, includes .
Example Question #321 : Vectors And Vector Operations
Compute
None of the other answers
None of the other answers
There is no correct way to compute the above. In order to take the dot product, the two vectors must have the same number of components. These vectors have and components respectively.
Example Question #322 : Vectors And Vector Operations
Compute
None of the other answers
To computer the dot product, we multiply the values of common components together and sum their totals. The outcome is a scalar value, not a vector.
So we have
Example Question #2331 : Calculus 3
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #2332 : Calculus 3
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #331 : Vectors And Vector Operations
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #2334 : Calculus 3
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #18 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #19 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above:
Example Question #13 : Dot Product
Given the following two vectors, and , calculate the dot product between them,.
The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.
Note that the dot product is a scalar value rather than a vector; there's no directional term.
Now considering our problem, we're given the vectors and
The dot product can be found following the example above: