Calculus 3 : Calculus Review

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #270 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small f(x)=\frac{1}{x^{\frac{12}{23}}}\)

Possible Answers:

\(\displaystyle \small \small \small \small f'(x)=-\frac{12}{23x^{\frac{35}{12}}}\)

\(\displaystyle \small \small \small \small \small f'(x)=-\frac{1}{x^{\frac{35}{12}}}\)

\(\displaystyle \small \small \small \small \small f'(x)=\frac{12}{23x^{\frac{35}{12}}}\)

\(\displaystyle \small \small \small \small \small f'(x)=-\frac{12}{23x^{\frac{11}{12}}}\)

Correct answer:

\(\displaystyle \small \small \small \small f'(x)=-\frac{12}{23x^{\frac{35}{12}}}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small f(x)=\frac{1}{x^{\frac{12}{23}}}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small a=-\frac{12}{23}\) to get

\(\displaystyle \small \small \small f'(x)=-\frac{12}{23}x^{-\frac{12}{23}-1}=-\frac{12}{23}x^{-\frac{35}{23}}=-\frac{12}{23x^{\frac{35}{12}}}\)

Example Question #271 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small f(x)=\frac{1}{\sqrt{2x+1}}\) 

Possible Answers:

\(\displaystyle \small \small \small \small \small \small f'(x)=-(2x+1)^{-\frac{3}{2}}\)

\(\displaystyle \small \small \small \small \small \small \small f'(x)=-\frac{1}{2}(2x+1)^{-\frac{3}{2}}\)

\(\displaystyle \small \small \small f'(x)=-\sqrt{2x+1}\)

\(\displaystyle \small \small \small \small \small \small \small f'(x)=-(2x+1)^{-\frac{1}{2}}\)

Correct answer:

\(\displaystyle \small \small \small \small \small \small f'(x)=-(2x+1)^{-\frac{3}{2}}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small f(x)=\frac{1}{\sqrt{2x+1}}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small a=-\frac{1}{2}\) and the chain rule to get

\(\displaystyle \small \small \small \small \small f'(x)=-\frac{1}{2}\cdot 2 (2x+1)^{-\frac{1}{2}-1}=-(2x+1)^{-\frac{3}{2}}\)

Example Question #272 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small f(x)=2x^{90}\)

Possible Answers:

\(\displaystyle \small \small \small \small \small \small \small f'(x)=180x^{89}\)

\(\displaystyle \small \small \small \small \small \small \small \small f'(x)=\frac{1}{45}x^{91}\)

\(\displaystyle \small \small \small \small \small \small \small \small f'(x)=180x^{91}\)

\(\displaystyle \small \small \small \small \small \small \small \small f'(x)=180x^{90}\)

Correct answer:

\(\displaystyle \small \small \small \small \small \small \small f'(x)=180x^{89}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small f(x)=2x^{90}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small a=90\) and the chain rule to get

\(\displaystyle \small \small \small \small \small \small f'(x)=2\cdot 90x^{89}=180x^{89}\)

Example Question #273 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small f(x)=5x^{95}\)

Possible Answers:

\(\displaystyle \small \small \small f'(x)=475x^{95}\)

\(\displaystyle \small \small \small \small f'(x)=475x^{96}\)

\(\displaystyle \small \small \small f'(x)=\frac{5}{96}x^{96}\)

\(\displaystyle \small \small f'(x)=475x^{94}\)

Correct answer:

\(\displaystyle \small \small f'(x)=475x^{94}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small f(x)=5x^{95}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small \small a=95\) to get

\(\displaystyle \small \small \small \small \small \small \small f'(x)=5\cdot 95x^{94}=475x^{94}\)

Example Question #274 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small f(x)=11x^{9}\)

Possible Answers:

\(\displaystyle \small \small \small \small \small \small \small \small \small \small f'(x)=99x^{10}\)

\(\displaystyle \small \small \small \small \small \small \small \small \small \small f'(x)=99x^{9}\)

\(\displaystyle \small \small \small \small \small \small \small \small \small f'(x)=99x^{8}\)

\(\displaystyle \small \small \small \small f'(x)=\frac{11}{9}x^{10}\)

Correct answer:

\(\displaystyle \small \small \small \small \small \small \small \small \small f'(x)=99x^{8}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small f(x)=11x^{9}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small \small \small a=9\) to get

\(\displaystyle \small \small \small \small \small \small \small \small f'(x)=11\cdot 9x^{8}=99x^{8}\)

Example Question #275 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small \small f(x)=4x^{2.5}\)

Possible Answers:

\(\displaystyle \small \small \small \small f'(x)=10\sqrt{x}\)

\(\displaystyle \small \small \small \small f'(x)=10\sqrt{x^5}\)

\(\displaystyle \small \small \small f'(x)=10x^{1.5}\)

\(\displaystyle \small \small \small \small f'(x)=10x^{2.5}\)

Correct answer:

\(\displaystyle \small \small \small f'(x)=10x^{1.5}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small \small f(x)=4x^{2.5}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small \small \small \small a=2.5\) to get

\(\displaystyle \small \small f'(x)=4\cdot 2.5x^{1.5}=10x^{1.5}\)

Example Question #276 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small f(x)=12x^{3}\)

Possible Answers:

\(\displaystyle \small \small \small \small \small f'(x)=12x^{2}\)

\(\displaystyle \small \small \small \small f'(x)=36x^{2}\)

\(\displaystyle \small \small \small \small \small f'(x)=3x^{2}\)

\(\displaystyle \small \small \small \small \small f'(x)=36x^{3}\)

Correct answer:

\(\displaystyle \small \small \small \small f'(x)=36x^{2}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small f(x)=12x^{3}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small \small \small \small \small a=3\) to get

\(\displaystyle \small \small \small f'(x)=12\cdot 3x^{2}=36x^{2}\)

Example Question #277 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small f(x)=\frac{\pi}{6}x^{10}\)

Possible Answers:

\(\displaystyle \small \small \small f'(x)=\frac{5\pi}{3}x^{10}\)

\(\displaystyle \small \small \small f'(x)=\frac{\pi}{66}x^{11}\)

\(\displaystyle \small \small f'(x)=\frac{5\pi}{3}x^{9}\)

\(\displaystyle \small \small \small f'(x)=\frac{10\pi}{3}x^{9}\)

Correct answer:

\(\displaystyle \small \small f'(x)=\frac{5\pi}{3}x^{9}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small f(x)=\frac{\pi}{6}x^{10}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small a=10\) to get

\(\displaystyle \small \small \small \small \small f'(x)=\frac{\pi}{6}\cdot 10x^{9}=\frac{5\pi}{3}x^{9}\)

Example Question #278 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small f(x)=(3x+1)^{2\pi}\)

Possible Answers:

\(\displaystyle \small \small f'(x)=6\pi(3x+1)^{2\pi-1}\)

\(\displaystyle \small \small \small \small f'(x)=3(3x+1)^{2\pi-1}\)

\(\displaystyle \small \small \small f'(x)=2\pi(3x+1)^{2\pi-1}\)

\(\displaystyle \small \small \small f'(x)=6\pi(3x+1)^{2\pi+1}\)

Correct answer:

\(\displaystyle \small \small f'(x)=6\pi(3x+1)^{2\pi-1}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small f(x)=(3x+1)^{2\pi}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small a=2\pi\) and the chain rule to get

\(\displaystyle \small \small \small \small \small \small \small f'(x)=3\cdot 2\pi(3x+1)^{2\pi-1}=6\pi(3x+1)^{2\pi-1}\)

Example Question #279 : Calculus 3

Find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small f(x)=(x^3+1)^{e^e}\) 

Possible Answers:

\(\displaystyle \small \small \small f'(x)=x^2\cdot e^e(x^3+1)^{e^e-1}\)

\(\displaystyle \small \small \small f'(x)=3x^2\cdot e^e(x^3+1)^{e^e+1}\)

\(\displaystyle \small \small f'(x)=3x^2\cdot e^e(x^3+1)^{e^e-1}\)

\(\displaystyle \small \small \small \small f'(x)=x^3\cdot e^e(x^3+1)^{e^e}\)

Correct answer:

\(\displaystyle \small \small f'(x)=3x^2\cdot e^e(x^3+1)^{e^e-1}\)

Explanation:

We can find the derivative \(\displaystyle \small f'(x)\) of the function \(\displaystyle \small \small \small \small \small f(x)=(x^3+1)^{e^e}\) by using the power rule for derivatives:

\(\displaystyle \frac{d}{dx}x^{a}=ax^{a-1}\)

with \(\displaystyle \small \small \small \small a=e^e\) and the chain rule to get

\(\displaystyle \small \small f'(x)=3x^2\cdot e^e(x^3+1)^{e^e-1}\)

Learning Tools by Varsity Tutors