Calculus 3 : Calculus 3

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=(x+4)^2-2(y-1)^2+3x^2y+17.

Possible Answers:

 \displaystyle (1.429,-0.757) is a saddle point.

 \displaystyle (1.429,-0.757) is a relative minimum.

\displaystyle (1.429,-0.757) is a relative maximum.

 \displaystyle (0,0) and \displaystyle (1.429,-0.757) are relative minima.

Correct answer:

 \displaystyle (1.429,-0.757) is a saddle point.

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=2(x+4)+6xy=2x+8+6xy

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=-4(y-1)+3x^2=3x^2-4y+4

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=2+6y

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=-4

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=6x

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=2x+8+6xy=0\Rightarrow 2x+6xy=-8

\displaystyle 2x+6xy=-8\Rightarrow x+3xy=-4\Rightarrow x(1+3y)=-4

\displaystyle x=\frac{-4}{1+3y}

\displaystyle f_y(x,y)=3x^2-4y+4=0\Rightarrow 3\left ( \frac{-4}{1+3y} \right )^2-4y+4=0

\displaystyle 3\left ( \frac{16}{(1+3y)^2} \right )-4y+4=0

\displaystyle \frac{48}{(1+3y)^2}=4y-4

\displaystyle 48=(4y-4)(1+3y)^2

\displaystyle (4y-4)(1+3y)^2-48=0

\displaystyle (4y-4)(1+6y+9y^2)-48=0

\displaystyle 4y+24y^2+36y^3-4-24y-36y^2-48=0

\displaystyle 36y^3-12y^2-20y-52=0

There is only one real value of \displaystyle y\displaystyle y\approx1.429

We find the corresponding value of \displaystyle x using \displaystyle x=\frac{-4}{1+3y} (found by rearranging the first derivative)

\displaystyle x(1.429)=\frac{-4}{1+3(1.429)}\approx -0.757

There is a critical point at \displaystyle (1.429,-0.757).  We need to determine if the critical point is a maximum or minimum using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(2+6y)(-4)-(6x)^2

\displaystyle D(x,y)=-8-24y-36x^2

 

At \displaystyle (1.429,-0.757),

\displaystyle D(x,y)=-8-24(-0.757)-36(1.429)^2=-63.35< 0

Since \displaystyle D(x,y)< 0\displaystyle (1.429,-0.757) is a saddle point.

Example Question #121 : Applications Of Partial Derivatives

Find the relative maxima and minima of \displaystyle f(x,y)=y^4+2x^3-2x^2y-7xy+9.

Possible Answers:

\displaystyle (0,0) and \displaystyle (-1.6,-1.786) are relative maxima

\displaystyle (0,0) is a relative maxima, \displaystyle (-1.6,-1.786) is a relative minima

\displaystyle (0,0) and \displaystyle (-1.6,-1.786) are saddle points

\displaystyle (0,0) is a relative minima, \displaystyle (-1.6,-1.786) is a relative maxima

Correct answer:

\displaystyle (0,0) and \displaystyle (-1.6,-1.786) are saddle points

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=6x^2-4xy-7y

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=4y^3-2x^2-7x

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=12x-4y

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=12y^2

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=-4x-7

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=6x^2-4xy-7y=0\Rightarrow 6x^2-y(4x-7)=0

\displaystyle 6x^2=y(4x-7)\Rightarrow y=\frac{6x^2}{4x-7}

\displaystyle f_y(x,y)=4y^3-2x^2-7x=0\Rightarrow 4\left ( \frac{6x^2}{4x-7} \right )^3-2x^2-7x=0

\displaystyle 4(6x^2)^3-2x^2(4x-7)^3-7x(4x-7)^3=0(4x-7)^3

\displaystyle 4(6x^2)^3-(2x^2+7x)(4x-7)^3=0

\displaystyle 864x^6-128x^5+224x^4+1176x^3-3430x^2+2401x=0

The real values of \displaystyle x are \displaystyle x=0 and \displaystyle x=-1.6

We find the corresponding value of \displaystyle y using \displaystyle y=\frac{6x^2}{4x-7} (found by rearranging the first derivative)

\displaystyle y(0)=\frac{6(0)^2}{4(0)-7}=0

\displaystyle y(-1.6)=\frac{6(-1.6)^2}{4(-1.6)-7}=\frac{6*2.56}{-1.6-7}\approx -1.786

There are critical points at \displaystyle (0,0) and \displaystyle (-1.6,-1.786).  We need to determine if the critical points are maxima or minima using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(12x-4y)(12y^2)-(-4x-7)^2

 

 At \displaystyle (0,0),

\displaystyle D(x,y)=(12(0)-4(0))(12(0)^2)-(-4(0)-7)^2=0-(-7)^2=-49< 0

Since \displaystyle D(x,y)< 0\displaystyle (0,0) is a saddle point.

 

 At \displaystyle (-1.6,-1.786),

\displaystyle D(x,y)=(12(-1.6)-4(-1.786))(12(-1.786)^2)-(-4(-1.6)-7)^2

\displaystyle D(x,y)=(-19.2-7.144)(38.278)-(6.4-7)^2=-1008.7< 0

Since \displaystyle D(x,y)< 0\displaystyle (-1.6,-1.786) is a saddle point.

Example Question #1 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=x^4+y^4+3xy.

Possible Answers:

 \displaystyle (0,0) is a saddle point, \displaystyle (-\sqrt3/2,\sqrt3/2) and \displaystyle (\sqrt3/2,-\sqrt3/2) are relative minima.

 \displaystyle (0,0) is a saddle point, \displaystyle (-\sqrt3/2,\sqrt3/2) and \displaystyle (\sqrt3/2,-\sqrt3/2) are saddle points.

 \displaystyle (0,0)\displaystyle (-\sqrt3/2,\sqrt3/2) and \displaystyle (\sqrt3/2,-\sqrt3/2) are relative maxima.

\displaystyle (0,0) is a relative minima, \displaystyle (-\sqrt3/2,\sqrt3/2) and \displaystyle (\sqrt3/2,-\sqrt3/2) are relative maxima.

Correct answer:

 \displaystyle (0,0) is a saddle point, \displaystyle (-\sqrt3/2,\sqrt3/2) and \displaystyle (\sqrt3/2,-\sqrt3/2) are relative minima.

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=4x^3+3y

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=4y^3+3x

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=12x^2

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=12y^2

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=3

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=4x^3+3y=0\Rightarrow 4x^3=-3y \Rightarrow y=\frac{-4x^3}{3}

\displaystyle f_y(x,y)=4y^3+3x=0\Rightarrow 4\left ( \frac{-4x^3}{3} \right )^3+3x=0

\displaystyle 4\left ( \frac{-64x^9}{27} \right )+3x=0\Rightarrow \frac{-256}{27}x^9+3x=0

\displaystyle x\left (\frac{-256}{27}x^8+3 \right )=0

Setting each factor in the expression equal to \displaystyle 0 gives us

\displaystyle x=0 and \displaystyle \frac{-256}{27}x^8+3=0\Rightarrow\frac{-256}{27}x^8=-3

\displaystyle x=\sqrt[8]{-3*\frac{27}{-257}}=\pm \sqrt3/2

 

The real values of \displaystyle x are \displaystyle x=0\displaystyle x=-\sqrt3/2 and \displaystyle x=\sqrt3/2

We find the corresponding value of \displaystyle y using \displaystyle y=\frac{-4x^3}{3} (found by rearranging the first derivative)

\displaystyle y(0)=\frac{-4(0)^3}{3}=0

\displaystyle y(-\sqrt3/2)=\frac{-4(-\sqrt3/2)^3}{3}=\sqrt3/2

\displaystyle y(\sqrt3/2)=\frac{-4(-\sqrt3/2)^3}{3}=-\sqrt3/2

 

There are critical points at \displaystyle (0,0),\displaystyle (-\sqrt3/2,\sqrt3/2)  and \displaystyle (\sqrt3/2,-\sqrt3/2).  We need to determine if the critical points are maxima or minima using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(12x^2)(12y^2)-(3)^2=144x^2y^2-9

 

 At \displaystyle (0,0),

\displaystyle D(x,y)=144(0)^2(0)^2-9=-9< 0

Since \displaystyle D(x,y)< 0\displaystyle (0,0) is a saddle point.

 

 At \displaystyle (-\sqrt3/2,\sqrt3/2),

\displaystyle D(x,y)=144\left ( \frac{-\sqrt3}{2} \right )^2\left ( \frac{\sqrt3}{2} \right )^2-9

\displaystyle D(x,y)=144\left ( \frac{3}{4} \right )\left ( \frac{3}{4} \right )-9=72>0

\displaystyle f_{xx}(x,y)=12x^2=12\left ( \frac{-\sqrt3}{2} \right )^2=12\left ( \frac{3}{4} \right )=9>0

Since \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0\displaystyle (-\sqrt3/2,\sqrt3/2) is a minimum.

 

At \displaystyle (\sqrt3/2,-\sqrt3/2),

\displaystyle D(x,y)=144\left ( \frac{\sqrt3}{2} \right )^2\left ( \frac{-\sqrt3}{2} \right )^2-9

\displaystyle D(x,y)=144\left ( \frac{3}{4} \right )\left ( \frac{3}{4} \right )-9=72>0

\displaystyle f_{xx}(x,y)=12x^2=12\left ( \frac{\sqrt3}{2} \right )^2=12\left ( \frac{3}{4} \right )=9>0

 

Since \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0\displaystyle (-\sqrt3/2,\sqrt3/2) is a minimum.

Example Question #2 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=sin(x)-cos(y)+4xy.

Possible Answers:

\displaystyle (0.0617,-0.2495) is a relative maxima

\displaystyle (0.0617,-0.2495) is a saddle point

\displaystyle (0,0) and \displaystyle (0.0617,-0.2495) is a relative maxima

\displaystyle (0,0) and \displaystyle (0.0617,-0.2495) is a relative minima

Correct answer:

\displaystyle (0.0617,-0.2495) is a saddle point

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 \displaystyle f(x,y)=sin(x)-cos(y)+4xy

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=cos(x)+4y

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=sin(y)+4x

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=-sin(x)

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=cos(y)

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=4

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=cos(x)+4y=0\Rightarrow cos(x)=-4y

\displaystyle y=-cos(x)/4

\displaystyle f_y(x,y)=sin(y)+4x=0\Rightarrow sin\left (\frac{-cos(x)}{4} \right )+4x=0

Using a TI-83 or other software to find the root, we find that  \displaystyle x\approx 0.0617

We find the corresponding value of \displaystyle y using \displaystyle y=-cos(x)/4 (found by rearranging the first derivative)

\displaystyle y(0.0617)=-cos(0.0617)/4 \approx-0.2495

 

There is a critical points at \displaystyle (0.0617,-0.2495).  We need to determine if the critical point is a maximum or minimum using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=-sin(x)cos(y)-4^2

 

 At \displaystyle (0.0617,-0.2495),

\displaystyle D(x,y)=-sin(0.0617)cos(-0.2495)-4^2\approx -16.06< 0

Since \displaystyle D(x,y)< 0\displaystyle (0.0617,-0.2495) is a saddle point.

Example Question #9 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=sin^2x+cos^2y-16.

Possible Answers:


 \displaystyle (0,0)\displaystyle (0,3\pi/2)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi),\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (3\pi/2,0)and \displaystyle (3\pi/2,3\pi/2) are relative maxima

\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (3\pi/2,\pi/2) and \displaystyle (3\pi/2,\pi)are saddle points

 \displaystyle (\pi/2,0)\displaystyle (\pi/2,3\pi/2)\displaystyle (\pi,0) and \displaystyle (\pi,3\pi/2) are relative minima


 \displaystyle (0,0), \displaystyle (0,3\pi/2)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi),\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (3\pi/2,0)and \displaystyle (3\pi/2,3\pi/2) are saddle points

\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (3\pi/2,\pi/2) and \displaystyle (3\pi/2,\pi)are relative minima

 \displaystyle (\pi/2,0), \displaystyle (\pi/2,3\pi/2)\displaystyle (\pi,0) and \displaystyle (\pi,3\pi/2) are relative maxima


 \displaystyle (0,0)\displaystyle (0,3\pi/2)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi),\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (3\pi/2,0)and \displaystyle (3\pi/2,3\pi/2) are relative minima

\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (3\pi/2,\pi/2) and \displaystyle (3\pi/2,\pi)are relative maxima

 \displaystyle (\pi/2,0)\displaystyle (\pi/2,3\pi/2)\displaystyle (\pi,0) and \displaystyle (\pi,3\pi/2) are saddle points


 \displaystyle (0,0)\displaystyle (0,3\pi/2)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi),\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (3\pi/2,0)and \displaystyle (3\pi/2,3\pi/2) are relative maxima

\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (3\pi/2,\pi/2) and \displaystyle (3\pi/2,\pi)\displaystyle (\pi/2,0)\displaystyle (\pi/2,3\pi/2)\displaystyle (\pi,0) and \displaystyle (\pi,3\pi/2) are saddle points

Correct answer:


 \displaystyle (0,0), \displaystyle (0,3\pi/2)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi),\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (3\pi/2,0)and \displaystyle (3\pi/2,3\pi/2) are saddle points

\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (3\pi/2,\pi/2) and \displaystyle (3\pi/2,\pi)are relative minima

 \displaystyle (\pi/2,0), \displaystyle (\pi/2,3\pi/2)\displaystyle (\pi,0) and \displaystyle (\pi,3\pi/2) are relative maxima

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

  

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=2sin(x)cos(x)

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=2cos(y)(-sin(y))=-2sin(y)cos(y)

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=2\left [ sin(x)(-sin(x))+cos(x)cos(x)\right ]

\displaystyle f_{xx}(x,y)=2\left [ -sin^2(x)+cos^2(x)\right ]=2cos^2(x)-2sin^2(x)

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=-2\left [ sin(y)(-sin(y))+cos(y)cos(y)\right ]

\displaystyle f_{yy}(x,y)=-2\left [ -sin^2(y)+cos^2(y)\right ]=2sin^2(y)-2cos^2(y)

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=0

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=2sin(x)cos(x)=0

\displaystyle sin(x)=0\Rightarrow x=0, \pi

\displaystyle cos(x)=0\Rightarrow x= \pi/2, 3\pi/2

\displaystyle f_y(x,y)=-2sin(y)cos(y)=0

\displaystyle sin(y)=0\Rightarrow y=0, \pi

\displaystyle cos(y)=0\Rightarrow y= \pi/2, 3\pi/2

Our derivatives equal \displaystyle 0 when \displaystyle x=0, \pi/2, \pi, 3\pi/2 and \displaystyle y=0, \pi/2, \pi, 3\pi/2.  Every linear combination of these points is a critical point.  The critical points are

 \displaystyle (0,0)\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (0,3\pi/2)

 \displaystyle (\pi/2,0)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi)\displaystyle (\pi/2,3\pi/2)

 \displaystyle (\pi,0)\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (\pi,3\pi/2)

 \displaystyle (3\pi/2,0)\displaystyle (3\pi/2,\pi/2)\displaystyle (3\pi/2,\pi)\displaystyle (3\pi/2,3\pi/2)

We need to determine if the critical point is a maximum or minimum using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(2cos^2x-2sin^2x)(2sin^2y-2cos^2y)-0^2

\displaystyle f_{xx}(x,y)=2cos^2(x)-2sin^2(x)

 

 \displaystyle (0,0)\displaystyle (0,\pi/2)\displaystyle (0,\pi)\displaystyle (0,3\pi/2)

\displaystyle D(0,0)=(2cos^2(0)-2sin^2(0))(2sin^2(0)-2cos^2(0))-0^2

\displaystyle =(2(1)-0)(2(0)-2(1))=(2)(-2)=-4< 0

Saddle point

\displaystyle D(0,\pi/2)=(2cos^2(0)-2sin^2(0))(2sin^2(\pi/2)-2cos^2(\pi/2))-0^2

\displaystyle =(2(1)-2(0))(2(1)-2(0))=(2)(2)=4>0

\displaystyle f_{xx}(0,\pi/2)=2cos^2(0)-2sin^2(0)=2(1)-2(0)=2>0

minimum

\displaystyle D(0,\pi)=(2cos^2(0)-2sin^2(0))(2sin^2(\pi)-2cos^2(\pi))-0^2

\displaystyle =(2(1)-0)(2(0)-2(-1))=(2)(2)=4>0

\displaystyle f_{xx}(0,\pi)=2cos^2(0)-2sin^2(0)=2(1)-2(0)=2>0

minimum

\displaystyle D(0,3\pi/2)=(2cos^2(0)-2sin^2(0))(2sin^2(3\pi/2)-2cos^2(3\pi/2))-0^2

\displaystyle =(2(1)-2(0))(2(-1)-2(0))=(2)(-2)=-4< 0

Saddle point

 

 \displaystyle (\pi/2,0)\displaystyle (\pi/2,\pi/2)\displaystyle (\pi/2,\pi)\displaystyle (\pi/2,3\pi/2)

\displaystyle D(\pi/2,0)=(2cos^2(\pi/2)-2sin^2(\pi/2))(2sin^2(0)-2cos^2(0))-0^2

\displaystyle =(2(0)-2(1))(2(0)-2(1))=(-2)(-2)=4>0

\displaystyle f_{xx}(\pi/2,0)=2cos^2(\pi/2)-2sin^2(\pi/2)=2(0)-2(1)=-2< 0

maximum

\displaystyle D(\pi/2,\pi/2)=(2cos^2(\pi/2)-2sin^2(\pi/2))(2sin^2(\pi/2)-2cos^2(\pi/2))-0^2

\displaystyle =(2(0)-2(1))(2(1)-2(0))=(-2)(2)=-4< 0

saddle point

\displaystyle D(\pi/2,\pi)=(2cos^2(\pi/2)-2sin^2(\pi/2))(2sin^2(\pi)-2cos^2(\pi))-0^2

\displaystyle =(2(0)-2(1))(2(0)-2(-1))=(-2)(2)=-4< 0

saddle point

\displaystyle D(\pi/2,3\pi/2)=(2cos^2(\pi/2)-2sin^2(\pi/2))(2sin^2(3\pi/2)-2cos^2(3\pi/2))-0^2

\displaystyle =(2(0)-2(1))(2(-1)-2(0))=(-2)(-2)=4>0

\displaystyle f_{xx}(\pi/2,2\pi/2)=2cos^2(\pi/2)-2sin^2(\pi/2)=2(0)-2(1)=-2< 0

maximum

 

 \displaystyle (\pi,0)\displaystyle (\pi,\pi/2)\displaystyle (\pi,\pi)\displaystyle (\pi,3\pi/2)

\displaystyle D(\pi,0)=(2cos^2(\pi)-2sin^2(\pi))(2sin^2(0)-2cos^2(0))-0^2

\displaystyle =(2(-1)-0)(2(0)-2(1))=(-2)(-2)=4>0

\displaystyle f_{xx}(\pi,\pi/2)=2cos^2(\pi)-2sin^2(\pi)=2(-1)-2(0)=-2< 0

maximum

\displaystyle D(\pi,\pi/2)=(2cos^2(\pi)-2sin^2(\pi))(2sin^2(\pi/2)-2cos^2(\pi/2))-0^2

\displaystyle =(2(-1)-2(0))(2(1)-2(0))=(-2)(2)=-4< 0

saddle point

\displaystyle D(\pi,\pi)=(2cos^2(\pi)-2sin^2(\pi))(2sin^2(\pi)-2cos^2(\pi))-0^2

\displaystyle =(2(-1)-0)(2(0)-2(-1))=(-2)(2)=-4< 0

saddle point

\displaystyle D(\pi,3\pi/2)=(2cos^2(\pi)-2sin^2(\pi))(2sin^2(3\pi/2)-2cos^2(3\pi/2))-0^2

\displaystyle =(2(-1)-2(0))(2(-1)-2(0))=(-2)(-2)=4>0

\displaystyle f_{xx}(\pi,3\pi/2)=2cos^2(\pi)-2sin^2(\pi)=2(-1)-2(0)=-2< 0

maximum

 

 \displaystyle (3\pi/2,0)\displaystyle (3\pi/2,\pi/2)\displaystyle (3\pi/2,\pi)\displaystyle (3\pi/2,3\pi/2)

\displaystyle D(3\pi/2,0)=(2cos^2(3\pi/2)-2sin^2(3\pi/2))(2sin^2(0)-2cos^2(0))-0^2

\displaystyle =(2(0)-2(-1))(2(0)-2(1))=(2)(-2)=-4< 0

saddle point

\displaystyle D(3\pi/2,\pi/2)=(2cos^2(3\pi/2)-2sin^2(3\pi/2))(2sin^2(\pi/2)-2cos^2(\pi/2))-0^2

\displaystyle =(2(0)-2(-1))(2(1)-2(0))=(2)(2)=4>0

\displaystyle f_{xx}(3\pi/2,\pi/2)=2cos^2(3\pi/2)-2sin^2(3\pi/2)=2(0)-2(-1)=2>0

minimum

\displaystyle D(3\pi/2,\pi)=(2cos^2(3\pi/2)-2sin^2(3\pi/2))(2sin^2(\pi)-2cos^2(\pi))-0^2

\displaystyle =(2(0)-2(-1))(2(0)-2(-1))=(2)(2)=4>0

\displaystyle f_{xx}(3\pi/2,\pi)=2cos^2(3\pi/2)-2sin^2(3\pi/2)=2(0)-2(-1)=2>0

minimum

\displaystyle D(3\pi/2,3\pi/2)=(2cos^2(3\pi/2)-2sin^2(3\pi/2))(2sin^2(3\pi/2)-2cos^2(3\pi/2))-0^2

\displaystyle =(2(0)-2(-1))(2(-1)-2(0))=(2)(-2)=-4< 0

saddle point

Example Question #2 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=x^2+y^2.

Possible Answers:

\displaystyle (1,1) is a relative maximum

\displaystyle (0,0) is a relative minimum

\displaystyle (1,1) is a relative minimum

\displaystyle (0,0) is a relative maximum

Correct answer:

\displaystyle (0,0) is a relative minimum

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=2x

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=2y

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=2

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=2

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=0

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=2x=0\Rightarrow x=0

\displaystyle f_y(x,y)=2y=0\Rightarrow y=0

There is a critical point at \displaystyle (0,0).  We need to determine if the critical point is a maximum or minimum using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=2(2)-0^2=4

 

 At \displaystyle (0,0),

\displaystyle D(x,y)=4>0

\displaystyle f_{xx}(x,y)=2>0

Since \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at \displaystyle (0,0).

Example Question #11 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=3x^2y^2.

Possible Answers:

 \displaystyle (-1,0) and \displaystyle (1,0) are saddle points

 

 \displaystyle (-1,0) is a relative minima and \displaystyle (1,0) is a relative maxima

 

 \displaystyle (-1,0) and \displaystyle (1,0) are relative minima

 

 \displaystyle (-1,0) is a relative maxima and \displaystyle (1,0) is a relative minima

 

Correct answer:

 \displaystyle (-1,0) and \displaystyle (1,0) are saddle points

 

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

\displaystyle f(x,y)=3x^2y^2-3x^2

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=6xy^2-6x

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=6x^2y

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=6y^2-6

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=6x^2

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=12xy

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_{xx}(x,y)=6y^2-6=0\Rightarrow 6y^2=6\Rightarrow y=\pm1

\displaystyle f_{yy}(x,y)=6x^2=0 \Rightarrow x=0

 

The critical points are  \displaystyle (-1,0) and \displaystyle (1,0).  We need to determine if the critical point is a maximum or minimum using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(6y^2-6)(6x^2)-(12xy)^2=36x^2y^2-36x^2-144x^2y^2

\displaystyle D(x,y)=-108x^2y^2-36x^2

 

 At \displaystyle (-1,0),

\displaystyle D(x,y)=-108(-1)^2(0)^2-36(-1)^2=-36< 0

Since \displaystyle D(x,y)< 0\displaystyle (-1,0) is a saddle point.

 

At \displaystyle (1,0),

\displaystyle D(x,y)=-108(-1)^2(0)^2-36(1)^2=-36< 0

Since \displaystyle D(x,y)< 0\displaystyle (1,0) is a saddle point.

 

 

Example Question #132 : Applications Of Partial Derivatives

Find the relative maxima and minima of \displaystyle f(x,y)=e^{5x^3+5y^2-2x}.

Possible Answers:

\displaystyle (0,0) is a saddle point

\displaystyle (0,0) is a relative minima

\displaystyle (5/4,0) is a relative minima

\displaystyle (5/4,0) is a saddle point

Correct answer:

\displaystyle (5/4,0) is a saddle point

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=e^{5x^3+5y^2-2x}(15x^2-2)=(15x^2-2)e^{5x^3+5y^2-2x}

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=e^{5x^3+5y^2-2x}(10y)=(10y)e^{5x^3+5y^2-2x}

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=(15x^2-2)e^{5x^3+5y^2-2x}(15x^2-2)+e^{5x^3+5y^2-2x}(30x)

\displaystyle f_{xx}(x,y)=((15x^2-2)^2+30x)e^{5x^3+5y^2-2x}

\displaystyle f_{xx}(x,y)=(225x^4-60x^2+30x+4)e^{5x^3+5y^2-2x}

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=(10y)e^{5x^3+5y^2-2x}(10y)+e^{5x^3+5y^2-2x}(10)

\displaystyle f_{yy}(x,y)=(100y^2)e^{5x^3+5y^2-2x}+(10)e^{5x^3+5y^2-2x}

\displaystyle f_{yy}(x,y)=(100y^2+10)e^{5x^3+5y^2-2x}

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=(100y^2+10)e^{5x^3+5y^2-2x}(15x^2-2)

\displaystyle f_{xy}(x,y)=(100y^2+10)(15x^2-2)e^{5x^3+5y^2-2x}

\displaystyle f_{xy}(x,y)=(1500x^2y^2+150x^2-200y^2-20)e^{5x^3+5y^2-2x}

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle f_x(x,y)=(15x^2-2)e^{5x^3+5y^2-2x}

\displaystyle f_y(x,y)=(10y)e^{5x^3+5y^2-2x}

The exponential part of each expression cannot equal \displaystyle 0, so each derivative is \displaystyle 0 only when \displaystyle (15x^2-2)=0 and \displaystyle 10y=0.  That is \displaystyle x=\pm \sqrt{2/15} and \displaystyle y=0.

 

The critical points are \displaystyle (-\sqrt{2/15},0) and \displaystyle (\sqrt{2/15},0).  We need to determine if the critical points are maxima or minima using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(225x^4-60x^2+30x+4)e^{5x^3+5y^2-2x}(100y^2+10)e^{5x^3+5y^2-2x} -((1500x^2y^2+150x^2-200y^2-20)e^{5x^3+5y^2-2x})^2

\displaystyle D(x,y)=(225x^4-60x^2+30x+4)(100y^2+10)(e^{5x^3+5y^2-2x})^2 -(1500x^2y^2+150x^2-200y^2-20)^2(e^{5x^3+5y^2-2x})^2

 

 At \displaystyle (5/4,0),

\displaystyle D(x,y)=(225(5/4)^4-60(5/4)^2+30(5/4)+4)(0+10)(e^{5(5/4)^3+5(0)^2-2(5/4)})^2 -(1500(5/4)^2(0)^2+150(5/4)^2-200(0)^2-20)^2(e^{5(5/4)^3+5(0)^2-2(5/4)})^2

\displaystyle D(x,y)=(225(5/4)^4-60(5/4)^2+30(5/4)+4)(10)(e^{5(5/4)^3-2(5/4)})^2 -(150(5/4)^2-20)^2(e^{5(5/4)^3-2(5/4)})^2

\displaystyle D(x,y)\approx(497)(10)(2.0457) -(45956.6)(2.0457)

\displaystyle D(x,y)\approx -83846.3< 0

 

Since \displaystyle D(x,y)< 0\displaystyle (5/4,0) is a saddle point.

Example Question #13 : Relative Minimums And Maximums

Find the relative maxima and minima of \displaystyle f(x,y)=e^{5x^2-7xy}.

Possible Answers:

\displaystyle (0,0) is a relative maximum

\displaystyle (0,0) is a saddle point

\displaystyle (5,-7) is a relative maximum

\displaystyle (5,-7) is a saddle point

Correct answer:

\displaystyle (0,0) is a saddle point

Explanation:

To find the relative maxima and minima, we must find all the first order and second order partial derivatives.  We will use the first order partial derivative to find the critical points, then use the equation

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

to classify the critical points.  

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)>0, then there is a relative minimum at this point.

If \displaystyle D(x,y)>0 and \displaystyle f_{xx}(x,y)< 0, then there is a relative maximum at this point.

If \displaystyle D(x,y)< 0, then this point is a saddle point.

If \displaystyle D(x,y)=0, then this point cannot be classified.

 

 The first order partial derivatives are

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=e^{5x^2-7xy}(10x-7y)

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=e^{5x^2-7xy}(-7x)

The second order partial derivatives are

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial x} \right )=f_{xx}(x,y)=e^{5x^2-7xy}(10)+(10x-7y)e^{5x^2-7xy}(10x-7y)

\displaystyle f_{xx}(x,y)=(10+(10x-7y)^2)e^{5x^2-7xy}

\displaystyle \frac{\partial }{\partial y} \left (\frac{\partial f }{\partial y} \right )=f_{yy}(x,y)=e^{5x^2-7xy}(-7x)(-7x)

\displaystyle f_{yy}(x,y)=90x^2*e^{5x^2-7xy}

 

\displaystyle \frac{\partial }{\partial x} \left (\frac{\partial f }{\partial y} \right )=\frac{\partial }{\partial y} \left (\frac{\partial f }{\partial x} \right )=f_{xy}(x,y)=e^{5x^2-7xy}(-7)+(-7x)e^{5x^2-7xy}(10x-7y)

\displaystyle f_{xy}(x,y)=(-7+(-7x)(10x-7y))e^{5x^2-7xy}

\displaystyle f_{xy}(x,y)=(-7-70x^2+49xy)e^{5x^2-7xy}

 

To find the critical points, we will set the first derivatives equal to \displaystyle 0

\displaystyle \frac{\partial f }{\partial x}=f_x(x,y)=e^{5x^2-7xy}(10x-7y)

\displaystyle \frac{\partial f }{\partial y}=f_y(x,y)=e^{5x^2-7xy}(-7x)

The exponential part of each expression cannot equal \displaystyle 0, so each derivative is \displaystyle 0 only when \displaystyle (10x-7y)=0 and \displaystyle -7x=0.  That is \displaystyle x=0 and \displaystyle y=0.

 

The critical point is \displaystyle (0,0).  We need to determine if the critical points are maxima or minima using \displaystyle D(x,y) and \displaystyle f_{xx}(x,y).  

\displaystyle D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left ( f_{xy}(x,y) \right )^2

\displaystyle D(x,y)=(10+(10x-7y)^2)e^{5x^2-7xy}*90x^2*e^{5x^2-7xy}-((-7-70x^2+49xy)e^{5x^2-7xy})^2

\displaystyle D(x,y)=(90x^2)(10+(10x-7y)^2)(e^{5x^2-7xy})^2 -(-7-70x^2+49xy)^2(e^{5x^2-7xy})^2

\displaystyle D(x,y)=\left [(90x^2)(10+(10x-7y)^2)-(-7-70x^2+49xy)^2 \right ](e^{5x^2-7xy})^2

\displaystyle D(x,y)=(4100x^4-5740x^3y+2009x^2y^2-80x^2+686xy-49)(e^{5x^2-7xy})^2

 

 At \displaystyle (0,0),

\displaystyle D(x,y)=(4100(0)-5740(0)+2009(0)-80(0)+686(0)-49)(e^{5(0)-7(0)})^2

\displaystyle D(x,y)=(-49)(1)^2< 0

 

 

Since \displaystyle D(x,y)< 0\displaystyle (0,0) is a saddle point.

Example Question #1 : Double Integration With Change Of Variables

Evaluate \displaystyle \int \int_R 3x+2y \ dA, where \displaystyle R is the trapezoidal region with vertices given by \displaystyle (0,0)\displaystyle (5,0)\displaystyle (\frac{5}{2}, \frac{5}{2}), and \displaystyle (\frac{5}{2}, -\frac{5}{2}),

using the transformation \displaystyle x=2u+3v, and \displaystyle y=2u-3v.

 

Possible Answers:

\displaystyle 0

\displaystyle \frac{375}{4}

\displaystyle \frac{375}{2}

\displaystyle \frac{37}{4}

\displaystyle \frac{35}{4}

Correct answer:

\displaystyle \frac{375}{4}

Explanation:

The first thing we have to do is figure out the general equations for the lines that create the trapezoid.

 

\displaystyle y=x

\displaystyle y=-x

\displaystyle y=-x+5

\displaystyle y=x-5

 

Now we have the general equations for out trapezoid, now we need to plug in our transformations into these equations.

\displaystyle y=x

\displaystyle 2u+3v=2u-3v

\displaystyle -6v=0\rightarrow v=0

 

\displaystyle y=-x

\displaystyle 2u+3v=-2u+3v

\displaystyle 4u=0\rightarrow u=0

 

\displaystyle y=-x+5

\displaystyle 2u+3v=-2u+3v+5

\displaystyle 4u=5\rightarrow u=\frac{5}{4}

\displaystyle y=x-5

\displaystyle 2u+3v=2u-3v-5

\displaystyle -6v=-5\rightarrow v=\frac{5}{6}

So our region is a rectangle given by \displaystyle 0 \leq u \leq \frac{5}{4}\displaystyle 0 \leq v \leq \frac{5}{6}

 

Next we need to calculate the Jacobian.

 

\displaystyle \begin{vmatrix} 2 & 3\\ 2 & -3 \end{vmatrix} =-6-6=-12

 

Now we can put the integral together.

 

\displaystyle \int_{0}^{\frac{5}{6}} \int_{0}^{\frac{5}{4}} (3(2u+3v)+2(2u-3v))) \cdot \left | -12\right | \ du\ dv

 

\displaystyle =\int_{0}^{\frac{5}{6}} \int_{0}^{\frac{5}{4}} 120u+36v \ du\ dv

\displaystyle =\int_{0}^{\frac{5}{6}} 60u^2+36uv \Big|_{0}^{\frac{5}{4}}\ dv

\displaystyle =\int_{0}^{\frac{5}{6}} 60( \frac{5}{4})^2+36(\frac{5}{4})v-0 \ dv

\displaystyle =\int_{0}^{\frac{5}{6}} \frac{375}{4}+45v \ dv

\displaystyle =\frac{375}{4}v+\frac{45}{2}v^2\Big|_{0}^{\frac{5}{6}} \ dv

\displaystyle =\frac{375}{4}\cdot\frac{5}{6}+\frac{45}{2}\cdot\Big(\frac{5}{6}\Big)^2 -0=\frac{375}{4}

 

Learning Tools by Varsity Tutors