Calculus 3 : Angle between Vectors

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Vectors And Vector Operations

Find the angle between the two vectors. Round to the nearest degree.

\displaystyle u=< 4,8>

\displaystyle v=< 7,-7>

Possible Answers:

\displaystyle \theta=108^o

\displaystyle \theta=134^o

\displaystyle \theta=22^o

\displaystyle \theta=54^o

Correct answer:

\displaystyle \theta=108^o

Explanation:

In order to find the angle between the two vectors, we follow the formula

\displaystyle cos(\theta)=\frac{u\bullet v}{||u||*||v||}

and solve for  

\displaystyle \theta

Using the vectors in the problem, we get

\displaystyle cos(\theta)=\frac{< 4,8>\bullet < 7,-7>}{\sqrt{4^2+8^2}*\sqrt{7^2+(-7)^2}}=\frac{4(7)+8(-7)}{\sqrt{80}*\sqrt{98} }

Simplifying we get

\displaystyle cos(\theta)=\frac{-28}{\sqrt{7840}}

To solve for 

\displaystyle \theta

we find the 

\displaystyle cos^{-1}

of both sides and get

\displaystyle cos^{-1}(cos(\theta))=cos^{-1}(\frac{-28}{\sqrt{7840}})

and find that

\displaystyle \theta=108^o

Example Question #51 : Vectors And Vector Operations

Find the angle between the two vectors. Round to the nearest degree.

\displaystyle u=< 9,-5>

\displaystyle v=< 5,9>

Possible Answers:

\displaystyle \theta=135^o

\displaystyle \theta=60^o

\displaystyle \theta=90^o

\displaystyle \theta=45^o

Correct answer:

\displaystyle \theta=90^o

Explanation:

In order to find the angle between the two vectors, we follow the formula

\displaystyle cos(\theta)=\frac{u\bullet v}{||u||*||v||}

and solve for  

\displaystyle \theta

Using the vectors in the problem, we get

\displaystyle cos(\theta)=\frac{< 9,-5>\bullet < 5,9>}{\sqrt{9^2+(-5)^2}*\sqrt{5^2+9^2}}=\frac{9(5)+(-5)9}{\sqrt{106}*\sqrt{106} }

Simplifying we get

\displaystyle cos(\theta)=0

To solve for 

\displaystyle \theta

we find the 

\displaystyle cos^{-1}

of both sides and get

\displaystyle cos^{-1}(cos(\theta))=cos^{-1}(0)

and find that

\displaystyle \theta=90^o

Example Question #51 : Vectors And Vector Operations

Find the angle between the two vectors. Round to the nearest degree.

\displaystyle u=< 1,-8>

\displaystyle v=< 0,6>

Possible Answers:

\displaystyle \theta=71^o

\displaystyle \theta=116^o

\displaystyle \theta=173^o

\displaystyle \theta=81^o

Correct answer:

\displaystyle \theta=173^o

Explanation:

In order to find the angle between the two vectors, we follow the formula

\displaystyle cos(\theta)=\frac{u\bullet v}{||u||*||v||}

and solve for  

\displaystyle \theta

Using the vectors in the problem, we get

\displaystyle cos(\theta)=\frac{< 1,-8>\bullet < 0,6>}{\sqrt{1^2+(-8)^2}*\sqrt{0^2+6^2}}=\frac{1(0)+(-8)6}{\sqrt{65}*\sqrt{36} }

Simplifying we get

\displaystyle cos(\theta)=\frac{-48}{\sqrt{2340}}

To solve for 

\displaystyle \theta

we find the 

\displaystyle cos^{-1}

of both sides and get

\displaystyle cos^{-1}(cos(\theta))=cos^{-1}(\frac{-48}{\sqrt{2340}})

and find that

\displaystyle \theta=173^o

Example Question #53 : Vectors And Vector Operations

Calculate the angle between the vectors \displaystyle \mathbf a = \left \langle 1,-1,0\right \rangle and \displaystyle \mathbf b = \left \langle 3,0,0\right \rangle, and express the measurement of the angle in degrees.

Possible Answers:

\displaystyle 30^\circ

\displaystyle 60^\circ

\displaystyle 90^\circ

\displaystyle 45^\circ

Correct answer:

\displaystyle 45^\circ

Explanation:

The angle \displaystyle \Theta between the vectors \displaystyle \mathbf a = \left \langle a_1,a_2,a_3\right \rangle and \displaystyle \mathbf b = \left \langle b_1,b_2,b_3\right \rangle is given by the following equation:

\displaystyle \cos\Theta=\frac{\mathbf a \cdot \mathbf b}{|\mathbf a| \ |\mathbf b|}

where \displaystyle \mathbf a \cdot \mathbf b represents the cross product of the vectors \displaystyle \mathbf a and \displaystyle \mathbf b, and \displaystyle |\mathbf a| and \displaystyle |\mathbf b| represent the respective magnitudes of the vectors \displaystyle \mathbf a and \displaystyle \mathbf b.

We are given the vectors \displaystyle \mathbf a = \left \langle 1,-1,0\right \rangle and \displaystyle \mathbf b = \left \langle 3,0,0\right \rangle. Calculate \displaystyle |\mathbf a|\displaystyle |\mathbf b|, and \displaystyle \mathbf a \cdot \mathbf b, and then substitute these results into the formula for the angle between these vectors, as shown:

\displaystyle |\mathbf a|=\sqrt{(1)^2+(-1)^2+(0)^2}=\sqrt{2},

\displaystyle |\mathbf b|=\sqrt{(3)^2+(0)^2+(0)^2}=\sqrt{9}=3,

and

\displaystyle \mathbf a \cdot \mathbf b = (3)(1)+(-1)(0)+(0)(0)=3.

Hence,

\displaystyle \cos\Theta=\frac{3}{3\sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}

The principal angle \displaystyle \Theta for which \displaystyle \cos\Theta=\frac{\sqrt{2}}{2} is \displaystyle \Theta=45^\circ. Hence, the angle between the vectors \displaystyle \mathbf a = \left \langle 1,-1,0\right \rangle and \displaystyle \mathbf b = \left \langle 3,0,0\right \rangle measures \displaystyle 45^\circ.

Example Question #55 : Vectors And Vector Operations

Find the angle between the gradient vector  and the vector \displaystyle \vec{u}=4\hat{i}-3\hat{j}+\sqrt{3}\hat{k} where \displaystyle f is defined as: 

 \displaystyle f(x,y,z)=\sqrt{x+1}+y+z

 

 

Possible Answers:

\displaystyle \theta = \cos^{-1}\left(\frac{1}{3}(\sqrt{7}+\sqrt{3}) \right )

\displaystyle \theta = \cos^{-1}\left(\frac{\sqrt{7}}{3} \right )

\displaystyle \theta = \cos^{-1}\left(\frac{\sqrt{21}}{3} \right )

\displaystyle \theta = \cos^{-1}\left(\sqrt{21} \right )

\displaystyle \theta = \cos^{-1}\left(\frac{1}{3}(\sqrt{21}-\sqrt{7}) \right )

Correct answer:

\displaystyle \theta = \cos^{-1}\left(\frac{1}{3}(\sqrt{21}-\sqrt{7}) \right )

Explanation:

Find the angle between the gradient vector  and the vector \displaystyle \vec{u}=4\hat{i}-3\hat{j}+\sqrt{3}\hat{k} where \displaystyle f is defined as: 

 

\displaystyle f(x,y,z)=\sqrt{x+1}+y+z

_____________________________________________________________ 

Compute the gradient by taking the partial derivative for each direction: 

At \displaystyle x = 0 we have: 

 ____________________________________________________________

The angle \displaystyle \theta between two vectors \displaystyle \vec{v_1} and \displaystyle \vec{v_2} can be found using the dot product: 

\displaystyle \vec{v_1}\cdot\vec{v_2}=\left \| \vec{v_1}\right \|\left \| \vec{v_2}\right \|cos(\theta )

We wish to find the angle \displaystyle \theta between the two vectors: 

 \displaystyle \vec{u}=4\hat{i}-3\hat{j}+\sqrt{3}\hat{k}

Compute the dot product between \displaystyle \vec{u} and  

Therefore the dot product is: 

 

Compute the magnitude of \displaystyle \vec{u} 

\displaystyle \left \| \vec{u}\right \|=\sqrt{16+9+3}=\sqrt{28}=2\sqrt{7}

 

 

 

 

Compute the magnitude of  

 

Now put it all together:  

 

 

\displaystyle \sqrt{3}-1 =3\sqrt{7}\cos(\theta)

 

\displaystyle \theta = \cos^{-1}\left(\frac{\sqrt{21}-\sqrt{7}}{3} \right )

 

Learning Tools by Varsity Tutors