Calculus 2 : Series in Calculus

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Maclaurin Series

What is the value of the following infinite series?

Possible Answers:

Correct answer:

Explanation:

We can recognize this series as  since the power series is

with the value  plugged into  since

.

So then we have

.

Example Question #301 : Series In Calculus

What is the value of the following infinite series?

Possible Answers:

The infinite series diverges.

Correct answer:

Explanation:

The infinite series can be computed easily by splitting up the two components of the numerator:

Now we recall the MacLaurin series for the exponential function , which is 

which converges for all . We can see that the two infinite series are  with , respectively. So we have

Example Question #4 : Maclaurin Series

Find the value of the infinite series.

Possible Answers:

The series does not converge.

Correct answer:

Explanation:

We can evaluate the series

by recognizing it as a power series of a known function with a value plugged in for . In particular, it looks similar to :

After manipulating the series, we get

.

Now it suffices to evalute , which is .

So the infinite series has value

.

Example Question #5 : Maclaurin Series

Find the value of the following infinite series:

Possible Answers:

Correct answer:

Explanation:

After doing the following manipulation:

We can see that this is the power series 

 with  plugged in.

So we have

Example Question #6 : Maclaurin Series

Find the value of the following series.

Possible Answers:

Divergent.

Correct answer:

Explanation:

We can split up the sum to get 

.

We know that the power series for  is 

and that each sum, 

 

and

 

are simply  with  plugged in, respectively.

Thus, 

.

Example Question #7 : Maclaurin Series

Find the value of the infinite series.

Possible Answers:

Infinite series does not converge.

Correct answer:

Explanation:

The series 

 looks similar to the series for , which is 

but the series we want to simplify starts at , so we can fix this by adding a  and subtracting a , to leave the value unchanged, i.e., 

.

So now we have  with , which gives us .

So then we have:

Example Question #1 : Maclaurin Series

Write out the first two terms of the Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series of a function, but about x=0 (so a=0 in the formula):

To write out the first two terms (n=0 and n=1), we must find the first derivative of the function (because the zeroth derivative is the function itself):

The derivative was found using the following rule:

Next, use the general form, plugging in n=0 for the first term and n=1 for the second term:

 

Example Question #3091 : Calculus Ii

Find the Maclaurin series for the function:  

Possible Answers:

Correct answer:

Explanation:

Write Maclaurin series generated by a function f.  The Maclaurin series is centered at  for the Taylor series.

Evaluate the function and the derivatives of  at .

Substitute the values into the power series.  The series pattern can be seen as alternating and increasing order.

Example Question #10 : Maclaurin Series

Find the first three terms of the Maclaurin series for the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series for the function about a=0:

First, we can find the zeroth, first, and second derivatives of the function (n=0, 1, and 2 are the first three terms). 

Plugging these values into the formula we get the following.

Example Question #301 : Series In Calculus

Write out the first three terms of the Maclaurin series of the following function:

Possible Answers:

Correct answer:

Explanation:

The Maclaurin series of a function is simply the Taylor series of a function about a=0:

Because we were asked to find the first three terms (n=0 to n=2), we must find the zeroth, first, and second derivatives of the function. The zeroth derivative is just the function itself.

Now plug in  into the formula and write out the first three terms (n=0, 1, 2):

Learning Tools by Varsity Tutors