Calculus 2 : Parametric, Polar, and Vector

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Vector Calculations

Evaluate the dot product of \displaystyle \left \langle 1,6\right \rangle and \displaystyle \left \langle 1,6\right \rangle.

Possible Answers:

\displaystyle 37

\displaystyle 0

\displaystyle 14

\displaystyle 12

\displaystyle \infty

Correct answer:

\displaystyle 37

Explanation:

Let vectors \displaystyle \vec{a}=\left \langle a1,a2\right \rangle  and \displaystyle \vec{b}=\left \langle b1,b2\right \rangle.

The formula for the dot product is:

\displaystyle \vec{a}\cdot\vec{b} = a1\cdot b1+ a2\cdot b2

Follow this formula and simplify.

\displaystyle \left \langle 1,6\right \rangle\cdot\left \langle 1,6\right \rangle = (1)(1)+(6)(6)=37

Example Question #2 : Vector Calculations

Solve: \displaystyle \left \langle 3,4,5\right \rangle\cdot\left \langle1,2,3 \right \rangle

Possible Answers:

\displaystyle 26

\displaystyle \left \langle 2,-4,2\right \rangle

\displaystyle \left \langle 3,8,15\right \rangle

\displaystyle 17

\displaystyle \left \langle 4,6,8\right \rangle

Correct answer:

\displaystyle 26

Explanation:

The problem \displaystyle \left \langle 3,4,5\right \rangle\cdot\left \langle1,2,3 \right \rangle is in the form of a dot product.  The final answer must be an integer, and not in vector form.

Write the formula for the dot product.

\displaystyle \left \langle a_1,a_2,a_3\right \rangle\cdot\left \langle b_1,b_2,b_3\right \rangle=a_1b_1+a_2b_2+a_3b_3

Substitute the givens and solve.

\displaystyle (3)(1)+(4)(2)+(5)(3)=3+8+15=26

Example Question #8 : Vector Calculations

Suppose \displaystyle \vec{a}= \left \langle 2,4,-3\right \rangle.  Find the magnitude of \displaystyle 2\vec{a}.

Possible Answers:

\displaystyle \sqrt{69}

\displaystyle 2\sqrt{29}

\displaystyle 4

\displaystyle 6

\displaystyle \sqrt{29}

Correct answer:

\displaystyle 2\sqrt{29}

Explanation:

Calculate \displaystyle 2\vec{a}.

\displaystyle \vec{a}= \left \langle 2,4,-3\right \rangle

\displaystyle 2\vec{a}= \left \langle 4,8,-6\right \rangle

Find the magnitude.

\displaystyle |2\vec{a}|=\sqrt{4^2+8^2+(-6)^2}=\sqrt{16+64+36}=\sqrt{116}=2\sqrt{29}

Example Question #161 : Vector

Two particles move freely in two dimensional space. The first particle's location as a function of time is \displaystyle \small \left< 3t^{2}-t,4\right>, and the second particle's location is \displaystyle \small \small \left< 6,t+1/t\right>. Will the particles ever collide for \displaystyle \small t>0

Possible Answers:

Impossible to determine

No, because the particles' \displaystyle \small x and \displaystyle \small y coordinates are never the same simultaneously at any instant in time.

Yes, because the particles have the same \displaystyle \small x or \displaystyle \small y component (not necessarily simultaneously).

No, because the particles never have the same \displaystyle \small x or \displaystyle \small y component (not necessarily simultaneously).

Yes, because the particles' \displaystyle \small x and \displaystyle \small y coordinates are the same simultaneously at a certain instant in time.

Correct answer:

No, because the particles' \displaystyle \small x and \displaystyle \small y coordinates are never the same simultaneously at any instant in time.

Explanation:

In order for the particles to collide, their \displaystyle \small x and \displaystyle \small y coordinates must be equal simultaneously. In order to check if this happens, we can set the particles' \displaystyle \small x-coordinates and \displaystyle \small y-coordinates equal to each other.

Let's start with the \displaystyle \small x-coordinate: 

\displaystyle \small \small \small 3t^{2}-t=6\rightarrow 3t^2-t-6=0.

Using the quadratic formula

\displaystyle \small \small t=\frac{-b\pm\sqrt{b^2-4ac}}{2a}, we get \displaystyle \small \small t=\frac{1+\sqrt{73}}{6}\approx1.59 

the other root is negative, so it can be discarded since \displaystyle \small t>0.

Now let's do the \displaystyle \small y-coordinate: \displaystyle \small \small t+1/t=4\rightarrow t^2+1=4t\rightarrow t^2-4t+1=0. Use the quadratic formula again to solve for \displaystyle \small t, and you'll get \displaystyle \small 2\pm\sqrt{3} (these roots are approximately \displaystyle \small 0.27 and \displaystyle \small 3.73). The particles never have the same \displaystyle \small x and \displaystyle \small y coordinate simultaneously, so they do not collide.

Example Question #1 : Vector Calculations

\displaystyle \vec{a}=< 3,2,1>

\displaystyle \vec{b}=< 1,0,10>

Calculate \displaystyle \vec{a}\cdot\vec{b}

Possible Answers:

\displaystyle 17

\displaystyle 39

\displaystyle 13

\displaystyle 15

\displaystyle 7

Correct answer:

\displaystyle 13

Explanation:

\displaystyle \vec{a}=< 3,2,1>

\displaystyle \vec{b}=< 1,0,10>

\displaystyle \vec{a}\cdot\vec{b} is simply the dot product of these two vectors. Mathematically, this is calculated as follows.

\displaystyle (3\cdot 1)+(2\cdot 0)+(1\cdot 10)  \displaystyle =13

 

Example Question #511 : Parametric, Polar, And Vector

Find the dot product of \displaystyle a=\left \langle 3,4,7\right \rangle and  \displaystyle b=\left \langle -1,5,6\right \rangle.

Possible Answers:

\displaystyle 57

\displaystyle 61

\displaystyle 58

\displaystyle 60

\displaystyle 59

Correct answer:

\displaystyle 59

Explanation:

To find the dot product of \displaystyle a=\left \langle 3,4,7\right \rangle and \displaystyle b=\left \langle -1,5,6\right \rangle, calculate the sum of the products of the vectors' corresponding components:

\displaystyle \left \langle 3,4,7\right \rangle\times \left \langle -1,5,6\right \rangle

\displaystyle =(3\times -1)+ (4\times 5)+(7\times 6)

\displaystyle =-3+ 20+42

\displaystyle =-3+ 62

\displaystyle =59

Example Question #512 : Parametric, Polar, And Vector

Find the dot product of \displaystyle a=\left \langle 5,-5,2\right \rangle and  \displaystyle b=\left \langle 2,3,8\right \rangle.

Possible Answers:

\displaystyle 9

\displaystyle 11

\displaystyle 12

\displaystyle 10

\displaystyle 8

Correct answer:

\displaystyle 11

Explanation:

To find the dot product of \displaystyle a=\left \langle 5,-5,2\right \rangle and \displaystyle b=\left \langle 2,3,8\right \rangle, calculate the sum of the products of the vectors' corresponding components:

\displaystyle \left \langle 5,-5,2\right \rangle\times \left \langle 2,3,8\right \rangle

\displaystyle =(5\times 2)+ (-5\times 3)+(2\times 8)

\displaystyle =10+ (-15)+16

\displaystyle =10+ 1

\displaystyle =11

Example Question #511 : Parametric, Polar, And Vector

Find the dot product of \displaystyle a=\left \langle 9,-8,7\right \rangle and  \displaystyle b=\left \langle 4,-1,2\right \rangle.

Possible Answers:

\displaystyle 54

\displaystyle 56

\displaystyle 62

\displaystyle 58

\displaystyle 60

Correct answer:

\displaystyle 58

Explanation:

To find the dot product of \displaystyle a=\left \langle 9,-8,7\right \rangle and \displaystyle b=\left \langle 4,-1,2\right \rangle, calculate the sum of the products of the vectors' corresponding components:

\displaystyle \left \langle 9,-8,7\right \rangle\times \left \langle 4,-1,2\right \rangle

\displaystyle =(9\times 4)+ (-8\times -1)+ (7\times 2)

\displaystyle =36+ 8+ 14

\displaystyle =36+ 22

\displaystyle =58

Example Question #512 : Parametric, Polar, And Vector

Find the dot product of \displaystyle a=\left \langle 2,5,-4\right \rangle and \displaystyle b=\left \langle 1,7,5\right \rangle

Possible Answers:

\displaystyle 19

\displaystyle 15

\displaystyle 17

\displaystyle 21

\displaystyle 13

Correct answer:

\displaystyle 17

Explanation:

The dot product of two vectors is the sum of the products of their composite elements. Given \displaystyle a=\left \langle 2,5,-4\right \rangle and \displaystyle b=\left \langle 1,7,5\right \rangle, the dot product would therefore be:

\displaystyle \left \langle 2,5,-4\right \rangle\times \left \langle 1,7,5\right \rangle

\displaystyle =(2\times 1)+(5\times 7)+(-4\times 5)

\displaystyle =2+35+(-20)

\displaystyle =37+(-20)

\displaystyle =17

Example Question #513 : Parametric, Polar, And Vector

Find the dot product of \displaystyle a=\left \langle 6,7,-3\right \rangle and \displaystyle b=\left \langle -4,-5,10\right \rangle.

Possible Answers:

\displaystyle -69

\displaystyle -89

\displaystyle -79

\displaystyle -99

\displaystyle -109

Correct answer:

\displaystyle -89

Explanation:

The dot product of two vectors is the sum of the products of their composite elements. Given \displaystyle a=\left \langle 6,7,-3\right \rangle and \displaystyle b=\left \langle -4,-5,10\right \rangle, the dot product would therefore be:

\displaystyle \left \langle 6,7,-3\right \rangle\times \left \langle -4,-5,10\right \rangle

\displaystyle =(6\times -4)+(7\times -5)+(-3\times 10)

\displaystyle =(-24)+(-35)+(-30)

\displaystyle =(-24)+(-65)

\displaystyle =-89

Learning Tools by Varsity Tutors