Calculus 2 : Parametric

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Parametric

Given \displaystyle x=7-9t and \displaystyle y=3t^{2}, what is \displaystyle y in terms of \displaystyle x (rectangular form)?

Possible Answers:

\displaystyle y=-3\left(\frac{7+x}{9}\right)^{2}

\displaystyle y=3\left(\frac{7-x}{9}\right)^{2}

\displaystyle y=-3\left(\frac{7-x}{9}\right)^{2}

\displaystyle y=3\left(\frac{7+x}{9}\right)^{2}

None of the above

Correct answer:

\displaystyle y=3\left(\frac{7-x}{9}\right)^{2}

Explanation:

Given \displaystyle x=7-9t and \displaystyle y=3t^{2}, let's solve both equations for :

\displaystyle x=7-9t\rightarrow t=\frac{7-x}{9}

\displaystyle y=3t^{2}\rightarrow t=\sqrt{\frac{y}{3}}

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle \sqrt{\frac{y}{3}}=\frac{7-x}{9}

\displaystyle \frac{y}{3}=\left(\frac{7-x}{9}\right)^{2}

\displaystyle y=3\left(\frac{7-x}{9}\right)^{2}

 

Example Question #604 : Calculus Ii

Given \displaystyle x=6t^{2}-14 and \displaystyle y=5t+1, what is \displaystyle y in terms of \displaystyle x?

Possible Answers:

\displaystyle y=5\sqrt{\frac{x-14}{6}}-1

None of the above

\displaystyle y=5\sqrt{\frac{x-14}{6}}+1

\displaystyle y=5\left(\pm\sqrt{\frac{x+14}{6}}\right)+1

\displaystyle y=5\sqrt{\frac{x+14}{6}}-1

Correct answer:

\displaystyle y=5\left(\pm\sqrt{\frac{x+14}{6}}\right)+1

Explanation:

Given \displaystyle x=6t^{2}-14 and \displaystyle y=5t+1, let's solve both equations for :

\displaystyle x=6t^{2}-14\rightarrow t=\pm\sqrt{\frac{x+14}{6}}

\displaystyle y=5t+1\rightarrow t=\frac{y-1}{5}

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle \frac{y-1}{5}=\pm\sqrt{\frac{x+14}{6}}

\displaystyle y-1=5\left(\pm\sqrt{\frac{x+14}{6}}\right)

\displaystyle y=5\left(\pm\sqrt{\frac{x+14}{6}}\right)+1

Example Question #93 : Parametric

Given \displaystyle x=2t-7 and \displaystyle y=8-t^{2}, what is \displaystyle y in terms of \displaystyle x?

Possible Answers:

\displaystyle y=8+\left(\frac{x+7}{2}\right)^2

\displaystyle y=8-\left(\frac{x-7}{2}\right)^2

None of the above

\displaystyle y=8-\left(\frac{x+7}{2}\right)^2

\displaystyle y=8+\left(\frac{x-7}{2}\right)^2

Correct answer:

\displaystyle y=8-\left(\frac{x+7}{2}\right)^2

Explanation:

Given \displaystyle x=2t-7 and \displaystyle y=8-t^{2}, let's solve both equations for :

\displaystyle x=2t-7\rightarrow t=\frac{x+7}{2}

\displaystyle y=8-t^{2}\rightarrow t=\sqrt{8-y}

Since both equations equal , let's set them equal to each other and solve for :

\displaystyle \sqrt{8-y}=\frac{x+7}{2}

\displaystyle 8-y=\left(\frac{x+7}{2}\right)^2

\displaystyle y=8-\left(\frac{x+7}{2}\right)^2

Example Question #91 : Parametric, Polar, And Vector

Given the parametric equations

\displaystyle x(t)=t+t^2, y(t)=t^3

what is \displaystyle \frac{dy}{dx}?

Possible Answers:

\displaystyle \frac{dy}{dx}=2t+1

\displaystyle \frac{dy}{dx}=\frac{2t+1}{3t^2}

\displaystyle \frac{dy}{dx}=\frac{3t^2}{2t+1}

\displaystyle \frac{dy}{dx}=3t^2

Correct answer:

\displaystyle \frac{dy}{dx}=\frac{3t^2}{2t+1}

Explanation:

It is known that we can derive \displaystyle \frac{dy}{dx} with the formula

\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}

So we just find \displaystyle \frac{dy}{dt}, \frac{dx}{dt}:

In order to find these derivatives we will need to use the power rule which states,

\displaystyle x^n \ dx =nx^{n-1}.

Applying the power rule we get the following.

\displaystyle \frac{dy}{dt}=3t^2

\displaystyle \frac{dx}{dt}=2t+1

so we have 

\displaystyle \frac{dy}{dx}=\frac{3t^2}{2t+1}.

Example Question #92 : Parametric, Polar, And Vector

Given the parametric equations

\displaystyle x(t)=\tan t, y(t)=e^t

what is \displaystyle \frac{dy}{dx}?

Possible Answers:

\displaystyle \frac{dy}{dx}=e^t

\displaystyle \frac{dy}{dx}=\frac{\sec^2 t}{e^t}

\displaystyle \frac{dy}{dx}=\frac{e^t}{\sec^2 t}

\displaystyle \frac{dy}{dx}=\sec^2 t

Correct answer:

\displaystyle \frac{dy}{dx}=\frac{e^t}{\sec^2 t}

Explanation:

It is known that we can derive \displaystyle \frac{dy}{dx} with the formula

\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}

So we just find \displaystyle \frac{dy}{dt}, \frac{dx}{dt}:

To find the derivatives we will need to use trigonometric and exponential rules.

Trigonometric Rule for tangent: \displaystyle tan(t)dt=sec^2(t)

Rules of Exponentials: \displaystyle e^u dx=e^u\cdot \frac{du}{dx}

Thus, applying the above rules we get the following derivatives.

\displaystyle \frac{dy}{dt}=e^t

\displaystyle \frac{dx}{dt}=\sec^2 t

so we have 

\displaystyle \frac{dy}{dx}=\frac{e^t}{\sec^2 t}.

Example Question #81 : Parametric Form

Find the arc length of the curve:

\displaystyle x=5t+3, y=4t-5, 0\leq t\leq2

Possible Answers:

\displaystyle 18

\displaystyle 2

\displaystyle \sqrt{41}

\displaystyle 2\sqrt{41}

\displaystyle 6

Correct answer:

\displaystyle 2\sqrt{41}

Explanation:

Finding the length of the curve requires simply applying the formula:

\displaystyle L=\int_{a}^{b}\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt

Where:

 \displaystyle a=0, b =2

Since we are also given \displaystyle x and \displaystyle y, we can easily compute the derivatives of each:

\displaystyle \frac{dx}{dt}=\frac{d}{dt}[5t+3]=5

\displaystyle \frac{dy}{dt}=\frac{d}{dt}[4t-5]=4

Applying these into the above formula results in:

\displaystyle L=\int_{0}^{2}\sqrt{(5)^2+(4)^2}\,dt=\int_{0}^{2}\sqrt{25+16}\,dt=\int_{0}^{2}\sqrt{41}\,dt

\displaystyle L=\sqrt{41}\int_{0}^{2}dt=\sqrt{41}\,(2-0)=2\sqrt{41}

This is one of the answer choices.

Example Question #91 : Parametric

Find the arc length of the curve (Round to three significant digits):

\displaystyle x=\frac{1}{4}t^3,\,y=\frac{1}{10}t^2,\,0\leq t\leq 1

Possible Answers:

\displaystyle 0.460

\displaystyle 0.272

\displaystyle 0.306

\displaystyle 0.409

\displaystyle 0.422

Correct answer:

\displaystyle 0.272

Explanation:

Finding the length of the curve requires simply applying the formula:

\displaystyle L=\int_{a}^{b}\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt

Where:

 \displaystyle a=0, b =1

Since we are also given \displaystyle x and \displaystyle y, we can easily compute the derivatives of each:

\displaystyle \frac{dx}{dt}=\frac{d}{dt}[\frac{1}{4}t^3]=\frac{3}{4}t^2

\displaystyle \frac{dy}{dt}=\frac{d}{dt}[\frac{1}{10}t^2]=\frac{1}{5}t

Applying these into the above formula results in:

\displaystyle L=\int_{0}^{1}\sqrt{(\frac{3}{4}t^2)^2+(\frac{1}{5}t)^2}\,dt=\int_{0}^{1}\sqrt{\frac{9}{16}t^4+\frac{1}{25}t^2}\,dt

Looking at this integral, it seems pretty intimidating at first, but we can do some algebraic manipulation to make it look like a simple u-substitution problem. First we notice that there is a \displaystyle t^2 term that is common within the two separate functions. If we factor it out then the integral becomes:

\displaystyle \int_{0}^{1}\sqrt{t^2[\frac{9}{16}t^2+\frac{1}{25}]}\,dt=\int_{0}^{1}t\sqrt{\frac{9}{16}t^2+\frac{1}{25}}\,dt

Now we can apply the rules of u-substitution:

\displaystyle u=\frac{9}{16}t^2+\frac{1}{25},\,du=\frac{18}{16}t\,dt=\frac{9}{8}t\,dt

Therefore:

\displaystyle \frac{8}{9}du=t\,dt

Now we must deal with the new bounds of our integral:

\displaystyle u(0)=\frac{9}{16}(0)^2+\frac{1}{25}=\frac{1}{25}

\displaystyle u(1)=\frac{9}{16}(1)^2+\frac{1}{25}=\frac{241}{400}

Our new integral becomes:

\displaystyle \frac{8}{9}\int_{\frac{1}{25}}^{\frac{241}{400}}\sqrt{u}\,du=\frac{8}{9}[\frac{2}{3}u^{\frac{3}{2}}]_{\frac{1}{25}}^{\frac{241}{400}}=\frac{16}{27}[(\frac{241}{400})^\frac{3}{2}-(\frac{1}{25})^\frac{3}{2}]

Plugging this result into a calculator results in:

\displaystyle 0.2723945261

Because the problem statement requires us to round this to three significant figures, the final result is:

\displaystyle 0.272

This is one of the answer choices.

Example Question #91 : Parametric

Find the arc length of the curve:

\displaystyle x=8\cos(3t),\,y=8\sin(3t),\,0\leq t\leq \frac{\pi}{2}

Possible Answers:

\displaystyle \frac{3\pi}{2}

\displaystyle 24\pi

\displaystyle 4\pi

\displaystyle 8\pi

\displaystyle 12\pi

Correct answer:

\displaystyle 12\pi

Explanation:

Finding the length of the curve requires simply applying the formula:

\displaystyle L=\int_{a}^{b}\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt

Where:

 \displaystyle a=0, b =\frac{\pi}{2}

Since we are also given \displaystyle x and \displaystyle y, we can easily compute the derivatives of each:

\displaystyle \frac{dx}{dt}=\frac{d}{dt}[8\cos(3t)]=-8\sin(3t)\cdot3=-24\sin(3t)

\displaystyle \frac{dy}{dt}=\frac{d}{dt}[8\sin(3t)]=8\cos(3t)\cdot3=24\cos(3t)

Applying these into the above formula results in:

\displaystyle L=\int_{0}^{\frac{\pi}{2}}\sqrt{(-24\sin(3t))^2+(24\cos(3t))^2}\,dt=\int_{0}^{\frac{\pi}{2}}\sqrt{24^2\sin^2(3t)+24^2\cos^2(3t)}\,dtWe can factor out the common \displaystyle 24^2, and pull it outside of the square-root, and we will notice one of the most common trigonometric identities:

\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{24^2[\sin^2(3t)+\cos^2(3t)]}\,dt=\int_{0}^{\frac{\pi}{2}}24\sqrt{\sin^2(3t)+\cos^2(3t)}\,dt

The term inside the square-root symbol can be simplified to \displaystyle 1.

\displaystyle 24\int_{0}^{\frac{\pi}{2}}\sqrt{1}\,dt=24\int_{0}^{\frac{\pi}{2}}dt=24[t]_{0}^{\frac{\pi}{2}}=24[\frac{\pi}{2}-0]=\frac{24\pi}{2}=12\pi

This is one of the answer choices.

Example Question #93 : Parametric Form

Find the arc length of the curve:

\displaystyle x=e^{3t}\cos(3t),\,y=e^{3t}\sin(3t),\,0 \leq t\leq \frac{\pi}{2}

Possible Answers:

\displaystyle \sqrt{2}e^{\frac{3\pi}{2}}

\displaystyle 3\sqrt{2}(e^{\frac{3\pi}{2}}-1)

\displaystyle \frac{1}{3}(e^{\frac{3\pi}{2}}-1)

\displaystyle 3\sqrt{2}e^{\frac{3\pi}{2}}

\displaystyle \sqrt{2}(e^{\frac{3\pi}{2}}-1)

Correct answer:

\displaystyle \sqrt{2}(e^{\frac{3\pi}{2}}-1)

Explanation:

Finding the length of the curve requires simply applying the formula:

\displaystyle L=\int_{a}^{b}\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt

Where:

 \displaystyle a=0, b =\frac{\pi}{2}

Since we are also given \displaystyle x and \displaystyle y, we can easily compute the derivatives of each, using the Product Rule:

\displaystyle \frac{dx}{dt}=\frac{d}{dt}[e^{3t}\cos(3t)]=-3e^{3t}\sin(3t)+3e^{3t}\cos(3t)=3e^{3t}[\cos(3t)-\sin(3t)]

\displaystyle \frac{dy}{dt}=\frac{d}{dt}[e^{3t}\sin(3t)]=3e^{3t}\cos(3t)+3e^{3t}\sin(3t)=3e^{3t}[\cos(3t)+\sin(3t)]

Applying these into the above formula results in:

\displaystyle L=\int_{0}^{\frac{\pi}{2}}\sqrt{(3e^{3t}[\cos(3t)-\sin(3t)])^2+(3e^{3t}[\cos(3t)+\sin(3t)])^2}\,dt

Simplifying the above will require these two formulas:

\displaystyle (a+b)^2=a^2+2ab+b^2 \rightarrow \,(1)

\displaystyle (a-b)^2=a^2-2ab+b^2\rightarrow\,(2)

It may also be useful to know this formula:

\displaystyle (x^a)^b=x^{ab}\rightarrow\,(3)

We can factor out the common \displaystyle (3e^{3t})^2 to make the above expression easier to look at:

\displaystyle L=\int_{0}^{\frac{\pi}{2}}\sqrt{(3e^{3t})^2([\cos(3t)-\sin(3t)]^2+[\cos(3t)+\sin(3t)])^2}\,dt

We can take the \displaystyle (3e^{3t})^2 outside of the square-root by cancelling out the \displaystyle 2 representing the "square". Then we can apply formulas \displaystyle (1) & \displaystyle (2) to the trigonometric expressions:

\displaystyle L=\int_{0}^{\frac{\pi}{2}}3e^{3t}\sqrt{[\cos^2(3t)-2\cos(3t)\sin(3t)+\sin^2(3t)]+[\cos^2(3t)+2\cos(3t)\sin(3t)+\sin^2(t)]}\,dt

We can now simplify the terms inside the square-root to get:

\displaystyle L=3e^{3t}\int_{0}^{\frac{\pi}{2}}\sqrt{[2\cos^2(3t)+2\sin^2(3t)]}\,dt

If we factor out the common "2" above, we are left with the trigonometric identity, which simplifies to \displaystyle 1, since:

\displaystyle \sin^2(t)+\cos^2(t)=1

Therefore the integral now becomes:

\displaystyle L=\int_{0}^{\frac{\pi}{2}}3e^{3t}\sqrt{2[\cos^2(3t)+\sin^2(3t)]}\,dt

\displaystyle L=\int_{0}^{\frac{\pi}{2}}3e^{3t}\sqrt{2(1)}\,dt=\int_{0}^{\frac{\pi}{2}}3\sqrt{2}e^{3t}\,dt

This is a simple integral which can be solved using u-substitution. But first, we can factor out the constant term \displaystyle 3\sqrt{2}, outside of the integral:

\displaystyle L=3\sqrt{2}\int_{0}^{\frac{\pi}{2}}e^{3t}\,dt

We will make our substitutions:

\displaystyle u=3t,\,du=3\,dt\rightarrow\frac{1}{3}du=dt

We also need to change the bounds of the new integral:

\displaystyle u(0)=3(0)=0

\displaystyle u(\frac{\pi}{2})=3(\frac{\pi}{2})=\frac{3\pi}{2}

Our new integral becomes:

\displaystyle L=3\sqrt{2}\int_{0}^{\frac{3\pi}{2}}\frac{1}{3}e^u\,du=\sqrt{2}[e^u]_{0}^{\frac{3\pi}{2}}=\sqrt{2}(e^{\frac{3\pi}{2}}-e^{0})=\sqrt{2}(e^{\frac{3\pi}{2}}-1)

This is one of the answer choices.

Example Question #1 : Graphing Parametrics

Suppose we have a curve parameterized by the equations:

\displaystyle x = e^{-t}

\displaystyle y = t^3 - 3t^2 + 1

What is the tangent line to the curve at \displaystyle t = 2?

Possible Answers:

\displaystyle y = -3

\displaystyle y = x + e

\displaystyle y = e^2 x - 4

\displaystyle y = -e x + 1

\displaystyle y = -3x -3 + 3e^{-2}

Correct answer:

\displaystyle y = -3

Explanation:

At \displaystyle t=2, the graph passes through \displaystyle (e^{-2}, 2^3 - 3\cdot 2^2 + 1) = (e^{-2}, -3)

Now to find the slope, we will need both derivatives with respect to t, which are:

\displaystyle \frac{dx}{dt} = -e^{-t}

\displaystyle \frac{dy}{dt} = 3t^2 - 6t

So to obtain the slope, we just use:

 \displaystyle \frac{\mathrm{dy} }{\mathrm{d} x} = \frac{dy/dt}{dx/dt},

and evaluate at \displaystyle t=2.

As it turns out, \displaystyle \frac{\mathrm{dy} }{\mathrm{d} t} at \displaystyle t=2, and \displaystyle \frac{\mathrm{dx} }{\mathrm{d} t} \neq 0, so the slope will be 0 for this curve at the point \displaystyle t=2.

That means that \displaystyle y = 0x +b = b, and so solving at ordered pair \displaystyle (e^{-2}, -3), the solution must be:

\displaystyle y = -3

Learning Tools by Varsity Tutors