Calculus 2 : Parametric

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Parametric Calculations

Solve for  if  and .

Possible Answers:

None of the above

Correct answer:

Explanation:

Given equations for  and  in terms of , we can find the derivative of parametric equations as follows:

, as the  terms will cancel out.

Using the Power Rule

 for all  and given  and :

.

 

Example Question #141 : Parametric

Solve for  if  and .

Possible Answers:

None of the above

Correct answer:

Explanation:

Given equations for  and  in terms of , we can find the derivative of parametric equations as follows:

, as the  terms will cancel out.

Using the Power Rule

 for all  and given  and :

Example Question #4 : Parametric Calculations

Solve for  if  and .

Possible Answers:

None of the above

Correct answer:

Explanation:

Since we have two equations  and , we can find  by dividing the derivatives of the two equations - thus:

 since the  terms cancel out by standard rules of division of fractions. 

In order to find the derivatives of  and , let's use the Power Rule

 for all :

Therefore, 

.

Example Question #4 : Parametric Calculations

Solve for  if  and .

Possible Answers:

Correct answer:

Explanation:

Since we have two equations  and , we can find  by dividing the derivatives of the two equations - thus:

 since the  terms cancel out by standard rules of division of fractions. 

In order to find the derivatives of  and , let's use the Power Rule

 for all :

 

Therefore,

 .

Example Question #1 : Parametric Calculations

Solve for  if  and .

Possible Answers:

None of the above

Correct answer:

Explanation:

Since we have two equations   and , we can find  by dividing the derivatives of the two equations - thus:

 (since the  terms cancel out by standard rules of division of fractions). 

In order to find the derivatives of  and , let's use the Power Rule

 for all :

Therefore, .

Example Question #142 : Parametric

Given  and , what is the length of the arc from ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given   and , we can use using the Power Rule

 for all  , to derive

  and .

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals  for all , we can determine that:

Example Question #143 : Parametric

Given  and , what is the length of the arc from ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given   and , we can use using the Power Rule

 for all , to derive 

 and .

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals  for all , we can determine that:

 

Example Question #144 : Parametric

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given   and ,we can use using the Power Rule
for all , to derive

 and 

 .

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

Example Question #145 : Parametric

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given   and , we can use using the Power Rule

 for all , to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

Example Question #1 : Parametric Form

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given   and , we can use using the Power Rule

 for all , to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

Learning Tools by Varsity Tutors