Calculus 2 : Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #158 : Definite Integrals

Evaluate

\displaystyle \small \small \small \small \small \int_2^\pi e^{\pi x-1}dx

Possible Answers:

\displaystyle \frac{1}{\pi}(e^{\pi^2-1}-e^{2\pi-1})

\displaystyle \frac{1}{\pi}e^{\pi^2-1}

\displaystyle \small e^{\pi^2-1}-e^{2\pi-1}

\displaystyle \small \frac{1}{\pi}e^{2\pi-1}

Correct answer:

\displaystyle \frac{1}{\pi}(e^{\pi^2-1}-e^{2\pi-1})

Explanation:

To evaluate

\displaystyle \small \small \small \small \small \int_2^\pi e^{\pi x-1}dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small F(\pi)-F(2). With \displaystyle \small \small \small \small F(x)=\frac{e^{\pi x-1}}{\pi}, we get

\displaystyle \small \small \small \int_2^\pi e^{\pi x-1}dx=\frac{1}{\pi}(e^{\pi^2-1}-e^{2\pi-1})

Example Question #159 : Definite Integrals

Evaluate

\displaystyle \small \small \small \int_1^{e^2} \frac{3}{x}dx

Possible Answers:

\displaystyle \small 2(e^2-1)

\displaystyle 2e^2

\displaystyle 6

\displaystyle \small 4

Correct answer:

\displaystyle 6

Explanation:

To evaluate

\displaystyle \small \small \small \int_1^{e^2} \frac{3}{x}dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small F(e^2)-F(1). With \displaystyle \small \small F(x)=3\ln x, we get

\displaystyle \small \small \small \small \int_0^{e^2} \frac{3}{x}dx=3(\ln e^2-\ln 1)=3(2-0)=6

Example Question #160 : Definite Integrals

Evaluate

\displaystyle \small \small \small \small \int_5^6 x^2dx

Possible Answers:

\displaystyle \frac{92}{3}

\displaystyle 31

\displaystyle 30

\displaystyle \frac{91}{3}

Correct answer:

\displaystyle \frac{91}{3}

Explanation:

To evaluate

\displaystyle \small \small \small \small \int_5^6 x^2dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small F(6)-F(5). With \displaystyle \small \small \small F(x)=\frac{x^3}{3}, we get

\displaystyle \small \small \int_5^{6} x^2dx=\frac{1}{3}(6^3-5^3)=\frac{1}{3}(216-125)=\frac{91}{3}

Example Question #161 : Definite Integrals

Evaluate

\displaystyle \small \small \small \small \small \small \int_2^5 \frac{1}{x}dx

Possible Answers:

\displaystyle \small \ln 3

\displaystyle \ln\frac{5}{2}

\displaystyle \small \ln 5

\displaystyle \small \frac{\ln 5}{\ln 2}

Correct answer:

\displaystyle \ln\frac{5}{2}

Explanation:

To evaluate

\displaystyle \small \small \small \small \small \small \int_2^5 \frac{1}{x}dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small F(5)-F(2). With \displaystyle \small \small \small \small \small F(x)=\ln x, we get

\displaystyle \small \small \small \small \small \int_2^5 \frac{1}{x}dx=\ln 5-\ln 2=\ln \frac{5}{2}

Example Question #162 : Definite Integrals

Evaluate

\displaystyle \small \small \small \int_{-1}^1 5x^5 dx

Possible Answers:

\displaystyle \small \frac{25}{2}

\displaystyle \small 0

\displaystyle \small 10

\displaystyle \small 2

Correct answer:

\displaystyle \small 0

Explanation:

To evaluate

\displaystyle \small \small \small \int_{-1}^1 5x^5 dx

we can see that \displaystyle \small f(x)=5x^5 is odd (what this means is that \displaystyle \small f(-x)=-f(x)), which means that the integral evaluates to \displaystyle \small 0, so we get

\displaystyle \small \small \small \small \int_{-1}^1 5x^5 dx=0

Example Question #163 : Definite Integrals

Evaluate

\displaystyle \small \small \int_1^3 4x dx

Possible Answers:

\displaystyle \small 16

\displaystyle \small 18

\displaystyle \small 8

\displaystyle \small 14

Correct answer:

\displaystyle \small 16

Explanation:

To evaluate

\displaystyle \small \small \int_1^3 4x dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small \small F(3)-F(1). With \displaystyle \small \small \small \small \small \small F(x)=2x^2, we get

\displaystyle \small \small \int_1^3 4x dx=2(3^2-1^2)=2(9-1)=16

Example Question #164 : Definite Integrals

Evaluate

\displaystyle \small \small \small \int_0^1 \pi x dx

Possible Answers:

\displaystyle \small 4\pi

\displaystyle \small \small \pi

\displaystyle \small 2\pi

\displaystyle \small \frac{\pi}{2}

Correct answer:

\displaystyle \small \frac{\pi}{2}

Explanation:

To evaluate

\displaystyle \small \small \small \int_0^1 \pi x dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small \small \small F(1)-F(0). With \displaystyle \small \small \small \small \small \small \small F(x)=\frac{\pi}{2}x^2, we get

\displaystyle \small \small \small \int_0^1 \pi x dx=\frac{\pi}{2}(1^2-0^2)=\frac{\pi}{2}

Example Question #165 : Definite Integrals

Evaluate

\displaystyle \small \small \small \small \int_0^1 \frac{3}{x+1} dx

Possible Answers:

\displaystyle \small \small \ln \sqrt{8}

\displaystyle \small \small \ln 2^{\frac{1}{3}}

\displaystyle \small \small 2\ln 3

\displaystyle \small 3\ln 2

Correct answer:

\displaystyle \small 3\ln 2

Explanation:

To evaluate

\displaystyle \small \small \small \small \int_0^1 \frac{3}{x+1} dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small \small \small F(1)-F(0). With \displaystyle \small \small \small \small \small \small \small \small F(x)=3\ln(x+1), we get

\displaystyle \small \small \small \small \small \small \int_0^1 \frac{3}{x+1}dx=3(\ln(1+1)-\ln(0+1))=3\ln 2

Example Question #166 : Definite Integrals

Evaluate

\displaystyle \small \small \int_0^1 ex^2 dx

Possible Answers:

\displaystyle \frac{e^3}{3}

\displaystyle \frac{e}{2}

\displaystyle \frac{e^2}{3}

\displaystyle \frac{e}{3}

Correct answer:

\displaystyle \frac{e}{3}

Explanation:

To evaluate

\displaystyle \small \small \int_0^1 ex^2 dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small \small \small F(1)-F(0). With \displaystyle \small \small F(x)=\frac{e}{3}x^3, we get

\displaystyle \small \small \int_0^1 ex^2dx=\frac{e}{3}(1^3-0^3)=\frac{e}{3}

Example Question #167 : Definite Integrals

Evaluate

\displaystyle \small \small \small \int_0^1 e^2x^3 dx

Possible Answers:

\displaystyle \small \frac{e^2}{4}

\displaystyle \small \small \frac{e^2}{5}

\displaystyle \small \small \frac{e^4}{2}

\displaystyle \small \small \frac{e^2}{3}

Correct answer:

\displaystyle \small \frac{e^2}{4}

Explanation:

To evaluate

\displaystyle \small \small \small \int_0^1 e^2x^3 dx

we take its antiderivative \displaystyle \small F(x) and calculate \displaystyle \small \small \small \small \small F(1)-F(0). With \displaystyle \small \small \small F(x)=\frac{e^2}{4}x^4, we get

\displaystyle \small \small \small \int_0^1 e^2x^3dx=\frac{e^2}{4}(1^4-0^4)=\frac{e^2}{4}

Learning Tools by Varsity Tutors