Calculus 2 : Indefinite Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #72 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #71 : Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

First, make the fraction three separate terms: . Now, integrate as normal, remembering to raise the exponent by 1 and then also putting that result on the denominator: . Remember to add a C at the end because it is an indefinite integral: .

Example Question #72 : Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

Recall that when integrating, raise the exponent of the x term by 1 and then also put that result on the denominator. Integrate each term separately and get an answer of . Remember to add a C at the end because it is an indefinite integral:

Example Question #71 : Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

Remember, when integrating, raise the exponent by 1 and then put that result in the denominator as well. Therefore, you should get: . Remember to add a C at the end to get because it is an indefinite integral.

Example Question #72 : Indefinite Integrals

Evaluate the following indefinite integral:

Possible Answers:

Correct answer:

Explanation:

Example Question #704 : Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #701 : Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #2453 : Calculus Ii

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #702 : Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Learning Tools by Varsity Tutors