Calculus 2 : Indefinite Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 


In this case,  and .

The antiderivative is  .

 

Example Question #52 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 


In this case, .

The antiderivative is  .

Example Question #331 : Finding Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 


In this case, .

The antiderivative is  .

Example Question #54 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

In this case, .

The antiderivative is  .

Example Question #51 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

In this case, .

The antiderivative is  .

Example Question #52 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

In this case, .

The antiderivative is  .

Example Question #57 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

In this case, .

The antiderivative is  .

Example Question #53 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

In this case, .

The antiderivative is  .

Example Question #54 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #54 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Learning Tools by Varsity Tutors