Calculus 2 : Indefinite Integrals

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #351 : Finding Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #81 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #703 : Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #81 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed

Correct answer:

Answer not listed

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #82 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #83 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #84 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

 

In this case, .

The antiderivative is  .

Example Question #85 : Indefinite Integrals

Evaluate.

Possible Answers:

Answer not listed.

Correct answer:

Explanation:

In order to evaluate this integral, first find the antiderivative of 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

If  then 

 

In this case, .

The antiderivative is  .

Example Question #82 : Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

Remember, when integrating, raise the exponent of an x term by one and then put that result on the denominator.

Integrate each term separately.

Remember to add a C at the end because it is an indefinite integral.

Therefore, the answer is:

.

Example Question #83 : Indefinite Integrals

Possible Answers:

Correct answer:

Explanation:

The first step here is to make the fraction three separate terms:

.

Then, integrate each term. Remember to raise the exponent of an x term by 1 and then put that result on the denominator.

Remember, if there is a single x on the denominator, integrating by taking ln of that term.

Therefore, the answer is:

.

Remember to add a +C at the end because it is an indefinite integral.

Learning Tools by Varsity Tutors