Calculus 2 : Derivatives

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : L'hospital's Rule

Calculate the following limit.

\(\displaystyle \lim_{x\rightarrow \infty} \frac{5x^2+2x+1}{x^4+2}\)

Possible Answers:

\(\displaystyle -\infty\)

\(\displaystyle \frac{5}{6}\)

\(\displaystyle 0\)

\(\displaystyle \infty\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 0\)

Explanation:

If we plugged in the integration limit to the expression in the problem we would get \(\displaystyle \frac{\infty}{\infty}\), which is undefined. Here we use L'Hopital's rule, which is shown below.

\(\displaystyle \lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\lim_{x\rightarrow a} \frac{f'(x)}{g'(x)}\)

This gives us, 

\(\displaystyle \lim_{x\rightarrow \infty} \frac{5x^2+2x+1}{x^4+2}=\lim_{x\rightarrow \infty} \frac{10x+2}{4x^3}\).

However, even with this simplified limit, we still get \(\displaystyle \frac{\infty}{\infty}\). So what do we do? We do L'Hopital's again!

\(\displaystyle \lim_{x\rightarrow \infty} \frac{10x+2}{4x^3}=\lim_{x\rightarrow \infty} \frac{10}{12x^2}\).

Now if we plug in infitinity, we get 0. 

\(\displaystyle \frac{10}{\infty}=0\)

Example Question #541 : Derivatives

Calculate the following limit.

\(\displaystyle \lim_{x->-\infty}\frac{e^{-2x}}{x^2}\)

Possible Answers:

\(\displaystyle e^{2}\)

\(\displaystyle \infty\)

\(\displaystyle 2\)

\(\displaystyle -\infty\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle \infty\)

Explanation:

If we plugged in \(\displaystyle -\infty\) directly, we would get an indeterminate value of \(\displaystyle \frac{\infty}{\infty}\).

We can use L'Hopital's rule to fix this. We take the derivate of the top and bottom and reevaluate the same limit.

\(\displaystyle \lim_{x->-\infty}\frac{e^{-2x}}{x^2}=-\frac{e^{-2x}}{x}\).

We still can't evaluate the limit of the new expression, so we do it one more time.

\(\displaystyle \lim_{x->-\infty}-\frac{e^{-2x}}{x}=\lim_{x->-\infty}2e^{-2x}=\infty\)

Example Question #4 : L'hospital's Rule

Find the 

\(\displaystyle \small \small \small \lim_{x\rightarrow 0}\frac{e^{x^{2}}-ln(1+x)-1}{cosx-sinx-1}\).

Possible Answers:

\(\displaystyle \small e\)

Does Not Exist

\(\displaystyle \small -1\)

\(\displaystyle \small 0\)

\(\displaystyle \small 1\)

Correct answer:

\(\displaystyle \small 1\)

Explanation:

Subbing in zero into \(\displaystyle \small \frac{(e^{x^{2}}-ln(1+x)-1)}{cosx-sinx-1}\) will give you \(\displaystyle \small \frac{0}{0}\), so we can try to use L'hopital's Rule to solve.

First, let's find the derivative of the numerator. 

\(\displaystyle \small e^{x^{2}}\) is in the form \(\displaystyle \small a^{u}\), which has the derivative \(\displaystyle \small a^{u}u'lna\), so its derivative is \(\displaystyle \small 2xe^{x^{2}}\)

\(\displaystyle \small ln(1+x)\) is in the form \(\displaystyle \small lnu\), which has the derivative \(\displaystyle \small u'/u\), so its derivative is \(\displaystyle \small 1/(1+x)\).

The derivative of \(\displaystyle \small 1\) is \(\displaystyle \small 0\) so the derivative of the numerator is \(\displaystyle \small 2xe^{x^{2}}-1/(1+x)\).

In the denominator, the derivative of \(\displaystyle \small cosx\) is \(\displaystyle \small -sinx\), and the derivative of \(\displaystyle \small sinx\) is \(\displaystyle \small cosx\). Thus, the entire denominator's derivative is \(\displaystyle \small -(sinx+cosx)\).

Now we take the 

\(\displaystyle \small \lim_{x\rightarrow 0}\frac{2xe^{x^{2}}-1/(x+1)}{-(sinx+cosx)}\), which gives us \(\displaystyle \small \frac{-1}{-1}=1\)

Example Question #2 : L'hospital's Rule

Evaluate the following limit.

\(\displaystyle \lim_{x->0}\frac{sin(x)}{ln(x)}\)

Possible Answers:

\(\displaystyle \frac{\pi}{2}\)

\(\displaystyle 2\pi\)

\(\displaystyle 0\)

\(\displaystyle -\infty\)

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle 0\)

Explanation:

If we plug in 0 into the limit we get \(\displaystyle \frac{0}{0}\), which is indeterminate.

We can use L'Hopital's rule to fix this. We can take the derivative of the top and bottom and reevaluate the limit.

\(\displaystyle \lim_{x->0}\frac{sin(x)}{ln(x)}=\lim_{x->0}xcos(x)=0\).

Now if we plug in 0, we get 0, so that is our final limit.

Example Question #2 : L'hospital's Rule

Evaluate the following limit

\(\displaystyle \small \lim_{x\to 0} \frac{\cos x-(x-1)^2}{x^3-3x}\)

if possible.

Possible Answers:

\(\displaystyle \small -\frac{2}{3}\)

\(\displaystyle \small 1\)

Limit does not exist

\(\displaystyle \small -1\)

Correct answer:

\(\displaystyle \small -\frac{2}{3}\)

Explanation:

If we try to directly plug in the limit value into the function, we get

\(\displaystyle \small \small \frac{\cos 0-(0-1)^2}{0^3-3\cdot 0}=\frac{1-1}{0-0}=\frac{0}{0}\)

Because the limit is of the form \(\displaystyle \small \frac{0}{0}\), we can apply L'Hopital's rule to "simplify" the limit to

\(\displaystyle \small \small \lim_{x\to 0} \frac{\cos x-(x-1)^2}{x^3-3x}=\lim_{x\to 0} \frac{\sin x-2(x-1)}{3x^2-3}\).

Now if we directly plug in 0 again, we get

\(\displaystyle \small \small \small \lim_{x\to 0} \frac{\cos x-(x-1)^2}{x^3-3x}=\lim_{x\to 0} \frac{\sin x-2(x-1)}{3x^2-3}=\frac{0-2(0-1)}{0-3}=-\frac{2}{3}\).

Example Question #541 : Derivatives

Find the limit:  

\(\displaystyle \lim_{x \to 0} \frac{cos(x)-1}{tan(x)}\)

Possible Answers:

\(\displaystyle -1\)

\(\displaystyle \infty\)

\(\displaystyle 1\)

\(\displaystyle -\infty\)

\(\displaystyle 0\)

 

Correct answer:

\(\displaystyle 0\)

 

Explanation:

In order to determine the limit, substitute \(\displaystyle x=0\) to determine whether the expression is indeterminate.  

\(\displaystyle \lim_{x \to 0} \frac{cos(x)-1}{tan(x)} = \frac{0}{0}\)

Use the L'Hopital's rule to simplify.  Take the derivative of the numerator and denominator separately, and reapply the limit.  

\(\displaystyle \lim_{x \to 0} \frac{-sin(x)}{sec^2(x)}= -sin(x)\times \frac{1}{cos(x)}\times \frac{1}{cos(x)}\)

Substitute \(\displaystyle x=0\)

\(\displaystyle -sin(0)\times \frac{1}{cos(0)}\times \frac{1}{cos(0)} =0\)

Example Question #31 : New Concepts

Evaluate: 

\(\displaystyle \lim_{x\to 3}\frac{(x-3)^2}{(3-x)^2}\)

Possible Answers:

\(\displaystyle 1\)

The limit does not exist.

\(\displaystyle 3\)

\(\displaystyle -1\)

\(\displaystyle -3\)

Correct answer:

\(\displaystyle 1\)

Explanation:

By substitution, the limit will yield an indeterminate form \(\displaystyle \frac{0}{0}\).  L'Hopital can be used in this scenario.

Take the derivative of the numerator and denominator separately, and then reapply the limit.

\(\displaystyle \lim_{x\to 3}\frac{(x-3)^2}{(3-x)^2}=\lim_{x\to 3}\frac{2(x-3)}{-2(3-x)}=\lim_{x\to 3}-\frac{x-3}{3-x}=\lim_{x\to 3}-\frac{x-3}{-(x-3)}=1\)

The answer is \(\displaystyle 1\).

Example Question #31 : New Concepts

Evaluate the following limit:

\(\displaystyle \lim_{t\rightarrow 2}\frac{t^2-4}{\sin (2-t)}\)

Possible Answers:

\(\displaystyle -\infty\)

\(\displaystyle 4\)

\(\displaystyle -4\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle -4\)

Explanation:

When you try to solve the limit using normal methods, you find that the limit approaches zero in the numerator and denominator, resulting in an indeterminate form "0/0". 

In order to evaluate the limit, we must use L'Hopital's Rule, which states that:

\(\displaystyle \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}\)

when an indeterminate form occurs when evaluting the limit.

Next, simply find f'(x) and g'(x) for this limit:

\(\displaystyle 2t, -\cos(2-t)\)

The derivatives were found using the following rules:

\(\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}\)\(\displaystyle \frac{d}{dx}\sin(u)=\cos(u)\frac{du}{dx}\)

Next, using L'Hopital's Rule, evaluate the limit using f'(x) and g'(x):

\(\displaystyle \lim_{t\rightarrow 2}\frac{2t}{-\cos (2-t)}=-4\)

Example Question #92 : Gre Subject Test: Math

Determine the limit of: 

\(\displaystyle \lim_{n\to \infty} \left(\frac{n+1}{n}\right)^2\)

Possible Answers:

Undefined

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \infty\)

Correct answer:

\(\displaystyle 1\)

Explanation:

Rewrite the expression.

\(\displaystyle \lim_{n\to \infty} (\frac{n+1}{n})^2= \lim_{n\to \infty} \frac{(n+1)^2}{n^2}\)

By substitutition, we will get the indeterminate form \(\displaystyle \frac{\infty}{\infty}\).

The L'Hopital's rule can be used to solve for the limit.  Write the L'Hopital's rule.

\(\displaystyle \lim_{x\to a} \frac{f(x)}{g(x)}= \lim_{x\to a} \frac{f'(x)}{g'(x)}\)

Apply this rule twice.

\(\displaystyle \lim_{n\to \infty} \frac{(n+1)^2}{n^2}=\lim_{n\to \infty} \frac{2(n+1)}{2n}=\lim_{n\to \infty} \frac{2}{2}=1\)

Example Question #32 : New Concepts

Evaluate the following limit:

\(\displaystyle \lim_{x\rightarrow 0}\frac{x}{\sin(x)}\)

 

Possible Answers:

\(\displaystyle -1\)

\(\displaystyle 0\)

\(\displaystyle 1\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 1\)

Explanation:

When evaluating the limit using normal methods (substitution), you find that the indeterminate form of \(\displaystyle \frac{0}{0}\) is reached. To evaluate the limit, we can use L'Hopital's Rule, which states that:

\(\displaystyle \lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}\)

So, we find the derivative of the numerator and denominator, which is

\(\displaystyle 1\) and \(\displaystyle \cos(x)\), respectively.

The derivatives were found using the following rules:

\(\displaystyle \frac{d}{dx}(x^n)=nx^{n-1}\)\(\displaystyle \frac{d}{dx}\sin(x)=\cos(x)\)

When we evaluate this new limit, we find that

\(\displaystyle \lim_{x\rightarrow 0}\frac{1}{cos(x)}=1\).

 

Learning Tools by Varsity Tutors