All Calculus 2 Resources
Example Questions
Example Question #5 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #6 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Note: Due to the simplicity of the differential equation, Euler's method finds the exact solution, even with a large step size, Using a smaller step size is unnecessary and more time consuming.
Example Question #7 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #2 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #9 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #10 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #11 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #12 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Example Question #13 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Note: Using a step size of gives an answer that is not close to the correct answer, . This is because the step size is too small.
Example Question #14 : Euler's Method
Use Euler's method to find the solution to the differential equation at with the initial condition and step size .
Euler's method uses iterative equations to find a numerical solution to a differential equation. The following equations
are solved starting at the initial condition and ending at the desired value. is the solution to the differential equation.
In this problem,
Starting at the initial point
We continue using Euler's method until . The results of Euler's method are in the table below.
Note: Using a larger step size got us closer the correct answer, .