Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We use the power rule  , where  is a constant, to find  and .

,   

In this case

The length of this curve is

Using the identity 

Using a u-substitution

Let 

 

and changing the bounds

 

 

 

 

Example Question #22 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

,   ,   .

We use the power rule  , where  is a constant, to find  and 

In this case, the length of this curve is

Using the identity 

using a u-substitution

and changing the bounds

Example Question #23 : Parametric Calculations

Find the length of the following parametric curve 

,   ,   .

Possible Answers:

Correct answer:

Explanation:

The length of a curve is found using the equation 

We then use the following trigonometric rules, 

 and  ,

where  and  are constants.

In this case

,

 

The length of this curve is

Using the identity 

Using the trigonometric identity  where  is a constant

Using the rule of integration for constants

Example Question #22 : Parametric Calculations

Given  and , what is the arc length between 

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , we can use using the Power Rule

for all ,

to derive

 and

.

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

Example Question #23 : Parametric Calculations

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given  and , wwe can use using the Power Rule

 for all ,

to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

Example Question #24 : Parametric Calculations

Given  and , what is the arc length between ?

Possible Answers:

Correct answer:

Explanation:

.

Given  and , we can use using the Power Rule

 for all ,

to derive 

 and 

.

Plugging these values and our boundary values for  into the arc length equation, we get:

Now, using the Power Rule for Integrals

 for all ,

we can determine that:

 

Example Question #161 : Parametric, Polar, And Vector

Rewrite the polar equation 

in rectangular form.

Possible Answers:

Correct answer:

Explanation:

or 

Example Question #1 : Polar Form

Rewrite in polar form:

Possible Answers:

Correct answer:

Explanation:

Example Question #1 : Polar

Rewrite the polar equation 

in rectangular form.

Possible Answers:

Correct answer:

Explanation:

Example Question #1 : Polar

Give the polar form of the equation of the line with intercepts .

Possible Answers:

Correct answer:

Explanation:

This line has slope  and -intercept , so its Cartesian equation is .

By substituting, we can rewrite this:

Learning Tools by Varsity Tutors